Phil. Trans. R. Soc. Lond. A 303, 1-104 (1981) [[1]

Printed in Great Britain

L N ol o e

SPHERICAL HARMONIC ANALYSIS OF
GEOMAGNETIC TIDES, 1964-1965

By D. E. WINCH
Department of Applied Mathematics FOT,
University of Sydney, Sydney, New South Wales, 2006 Australia

(Communicated by P. H. Roberts, F.R.S. — Received T March 1980 —
Revised T October 1980)

CONTENTS

‘ PAGE
INnTRODUCTION 2
CHAPMAN-MILLER METHOD 8
ANALYSIS OF OBSERVATORY DATA 16
SPHERICAL HARMONIC ANALYSIS 22
Di1scUssION OF RESULTS 28
IONOSPHERIC DYNAMO THEORY AND HOUGH FUNCTIONS 58
SUMMARY 71
NUMERICAL RESULTS 97
REFERENCES 100

The mathematical forms chosen for analyses of §q and L by seventeen different authors
are reviewed. On the basis of the review and on consideration of the ionospheric
dynamo theory and the Hough function structure of wind velocities in the upper
atmosphere, a mathematical model is chosen that includes two more terms than the
recent analysis by Malin (1973). Hourly mean values from 130 magnetic observatories
for the 1.Q.S.Ys (International Quiet Solar Years) 1964 and 1965 were prepared
in machine-readable form and analysed. The solar and lunar transient magnetic
variations were evaluated, together with the lunar elliptic magnetic tide and the
seasonal change at one and two cycles per year for all magnetic tides. Spherical har-
monic analyses were made of the phase-law tides and the smaller partial tides.
Altogether 94 different spherical harmonic analyses were completed for a total of
ten different magnetic tides. Two of the ten tides are the solar and lunar magnetic
tides usually denoted § and L respectively. The results are tabulated in a form that
distinguishes between eastward- and westward-moving terms, which is suitable for
the evaluation of phase angle differences and amplitude ratios between internal and
external parts. Malin’s ocean dynamo calculation has been applied to the lunar and
lunar elliptic magnetic tides. The spherical harmonic coeflicients are compared in
some detail with those of Malin (1973) for years of high sunspot activity. The magnetic
tidal potential associated with a given atmospheric tidal mode is derived theoretically
and used to obtain an estimate of the Hough function components of the solar and
lunar semi-diurnal atmospheric tides at ionospheric levels from the corresponding
magnetic tidal potential.
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2 D. E. WINCH

1. INTRODUCTION

When the electrically conducting layers of the upper atmosphere move, they cut the lines of
force of the Earth’s main magnetic field. Electromotive forces are induced and, as a result,
electrical currents flow. The varying magnetic fields associated with such currents are referred
to as the transient daily magnetic variations. Those that arise from movements of the upper
atmosphere caused by the thermal heating and tidal influence of the Sun are called solar
daily magnetic variations and denoted by S. On magnetically quiet days the solar daily
magnetic variations are denoted by Sy. Transient magnetic variations arising from the tidal
influence of the Moon on the upper atmosphere are called lunar magnetic tides and denoted
by L. To simplify the description, both S and L will be referred to as magnetic tides (cf. Chapman
& Malin 1970).

It is appropriate to review the available analyses of § and L. It will be seen that although
every analysis contains coefficients of spherical harmonics P}, P3, P3, P? for the 1, 2, 3, 4 ¢/d
(cycles per day) terms respectively, authors differ considerably in the selection of other spherical
harmonic terms. There is also variety in the methods of analysis, the choice of data and moti-
vation for the analysis. ’

The first global analysis of any magnetic tide was that of the solar magnetic tide by Schuster
(1889). Using the assumption of local time dependence and antisymmetry about the equator,
he analysed data from four magnetic observatories and noted that the hypothesis of external
origin gave a model that best fitted the observations. Schuster then used the theory of induction
in spherical conductors given by Lamb in an Appendix to the same paper and concluded that
no uniformly conducting Earth could give agreement between the different results for the
different harmonics. Schuster noted Lamb’s suggestion that if the upper layers of the Earth
were less conducting than the deeper interior, then the results might be in agreement. He
surmised that ‘insulators lose their insulating powers at high temperatures’ and that therefore
such a distribution was physically possible. Schuster represented the magnetic potential of the
external part of the magnetic tide by means of a current function, defined by Maxwell (1881).
Current function representations have been used in virtually all subsequent analyses of magnetic
tides.

Schuster’s analysis gave numerical coefficients for the following spherical harmonic functions
for the four daily harmonics of the solar magnetic tide:

diurnal P}, Pl, P}, semi-diurnal ~ P%, PZ, P2,
ter-diurnal P}, P3, P}, quater-diurnal P}, P}, P§,
diurnal seasonal differences pPi Py Pl

semi-diurnal seasonal differences P2, P2, P2

Schuster’s first memoir of 1889 provided the foundation for the analysis of magnetic tides
together with models of electrical conductivity of the Earth’s interior. His second memoir
appeared in 1908, and although it contained no new analysis of magnetic data, it set down
the fundamental dynamo theory of magnetic tides, with the use of two scalar potentials R, S,
to represent the induced electric field. Assuming the upper atmospheric conducting layer to be
uniformly electrically conducting, he showed that a term P in the scalar potential for the wind
velocity field (or barometric pressure) would give rise to magnetic tides Py, and P;" , only, and
for the diurnal magnetic solar tides he surmised that terms of the form P} and P} were required
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in the representation of the diurnal pressure wave (or wind velocity). He also showed that
if the upper atmosphere were uniformly conducting and the Earth’s dipole axis inclined to
the geographic axis, then a term P in the pressure potential would give terms of the form
PrAt, PR, Pt PRl in the potential of the magnetic tide. Such terms will, because of the
variation in the superscript m, no longer depend purely upon local time. He showed that non-
local time diurnal terms could dominate in the westerly force magnetic variations at the equator.
Inclination of the dipole axis was put forward by McNish (1937) to explain the original obser-
vations of enhanced magnetic tides in the region of the magnetic equator, -a phenomenon now
explained in terms of the equatorial electrojet.

TABLE 1.1, MAGNETIC TIDAL POTENTIAL TERMS RESULTING FROM
WIND VELOCITY POTENTIALS P! AND P3

wind velocity ionospheric conductivity
pressure potential... pri P2 and magnetic field type
magnetic tidal potential P} P uniform conductivity,
axial dipole
P} Pl P P! uniform conductivity,
inclined dipole
P}, Py P} P2 conductivity a3+ a; cos ¥,
Py, PL P2 Pl P2 P3 axial dipole

If tis the Universal Time (U.T.), and ¢ is the east longitude of an observatory, then t* = ¢+ ¢
is the local time at the observatory. Terms arise in the magnetic tidal potential of the form
mt + ng, where m, n, are integers. Only those terms of the form m(¢+ ¢) will be described as
local time terms. All others will be referred to as non-local time terms.

Schuster (1908) dealt with the theoretical analysis of the seasonal change of magnetic tides
by assuming that the electrical conductivity of the upper atmosphere varied as a4+ a, cos yx,
where y is the geocentric solar zenith angle, and found that a term P, in the barometric
pressure (or wind velocity) gave rise to terms in the magnetic tidal potential of the form

m+1 m+1 m—1 m—1 m-+1 m--1
Pn+2aPn s L nt2H Pn ,Pn—2a Pn—z-

The diurnal and semi-diurnal terms, P} and P$ respectively, in the wind velocity give rise
to terms in the magnetic tidal potential, and these are collected in table 1.1.

Chapman (1919) made the next major contribution to the study of magnetic tides with
spherical harmonic analyses of both solar and lunar magnetic tides, for four daily harmonics
of each. His spherical harmonic coefficients, as derived, can be summarized as follows for both
solar and lunar magnetic tides:

diurnal P}, semi-diurnal PZ,
ter-diurnal  P3, quater-diurnal P},
diurnal seasonal differences P}, PL,

semi-diurnal seasonal differences P32, P2,
ter-diurnal seasonal differences  P3, P2.

Chapman’s seasonal analyses are for three seasons of four months each, known as Lloyd’s
seasons. Malin (1974) reanalysed Chapman’s data and included a correction.
Fritsche (1902, 1905) analysed solar magnetic tides at 27 stations, rejecting results from nine
1-2
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high latitude observatories to include only those results that varied with local time. He pre-
sented the first results of separation of the magnetic tidal fields into internal and external parts.
His analysis of the solar magnetic tide determined the following local time terms:

diurnal P}, semi-diurnal PZ, ter-diurnal P32,
quater-diurnal P}, seasonaldiurnal P}, P,
seasonal semi-diurnal P%, P}, seasonal ter-diurnal P3,

seasonal quater-diurnal P3.

Walker (1913) used data from nine observatories in an analysis of the solar tide, for annual
terms only. His analysis of the diurnal and semi-diurnal terms includes non-local time spherical
harmonic coefficients arising from the inclination of the dipole axis to the geographic axis,
as indicated in the theory of Schuster (1908):

diurnal P} and P}, P, P3,
semi-diurnal P% and P}, P3, Pi.

Walker commented that the inclusion of the non-local time terms (or Schuster terms) went a
considerable way towards meeting the difficulties of ‘coordinating the data’.

Van Bemmelen (1912, 1913) analysed data from 15 observatories, analysing both solar and
lunar magnetic tides for the semi-diurnal term. Using the method of Schuster, he represented
the potentials in terms of the spherical harmonics P3, P2, P}, P%, P2, P%. His paper was the first
spherical harmonic analysis of lunar magnetic tides to appear. The 1912 paper showed (in-
correctly) that the internal induced lunar field was greater than the external inducing field,
but this error was corrected in the 1913 paper.

Steiner (1914) reanalysed the data used by Fritsche, subdivided into summer and winter
half-years. The following terms were used:

diurnal Pi, Py, P Pl semi-diurnal  P3%, P P2,

ter-diurnal P}, P}, quater-diurnal Pj.

Owing partly to the normalization used, the coefficient of P} in the diurnal term was found
to be large.

Van Vleuten (19174, b) followed the analysis of Steiner, using the same theoretical form
for the potential, but concluded that a substantial part of the magnetic variation field was not
derived from a potential. Chapman (1919) pointed out that the physical implication, involving
Earth-to-air electric currents was very improbable.

The analysis of the solar magnetic tide by McNish (1937) was the first to include data from
what would now be called an equatorial electrojet station: Huancayo, Peru. The data were for
five observatories, for equinoctial months only, and the first three daily harmonics were analysed

as follows:
diurnal 1L, Py PPl semi-diurnal P%, P%, P%, P2,

ter-diurnal P§, P}, PE P3.

McNish’s analysis differs from earlier analyses in that the equator-symmetric Pi, P} terms are
included in the analysis of the diurnal Fourier coefficients. Earlier analyses based on a small
number of Northern Hemisphere results assumed that northern summer and southern summer
results would be identical, and evaluated P} and P} only for the seasonal semi-differences, e.g.
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one half of the difference between summer and winter Fourier coeflicients. McNish commented
that the last two spherical harmonic coeflicients for each harmonic were relatively small, but
the awkward scaling used for the spherical harmonic functions has misled him. In fact, the
terms P}, PZ, P} in his analysis, although smaller than the corresponding principal local time
terms P3, P3, P}, respectively, are, nevertheless, appreciable, and the analysis of such terms
forms an important part of the present paper.

Benkova (1940) analysed data from 46 of the Second Polar Year (1932-1933) observatories.
The assumption of dependence upon local time only was used, and the following coefficients
calculated:

diurnal Pi, P}, PL PL P}
semi-diurnal P3, P%, P} P2

Benkova’s analysis was the first to make use of Schmidt normalized spherical harmonics and
it is clear for the first time from published coefficients that the P} and P2 local time terms are
appreciable when compared with the principal local time terms P} and Pj respectively.

Hasegawa & Ota (19504) also analysed the Second Polar Year data. They used the local
time assumption, and analysed the first three daily harmonics. Results were given for Schmidt
normalized spherical harmonic functions as follows:

diurnal Pl Pl PL Pl Pl Pl

ST 2 p2 p2 p2 p2 p2
semi-diurnal Pj3, P% P3 P2 P3, P3,
ter-diurnal P}, P3.

For the diurnal term at least, the term P} stands out in the list after the principal terms P} and
P3. Hasegawa & Ota (1950b) presented Sy overhead current systems at two-hourly intervals
based on the results of their analysis.

Maeda (1953) also analysed data for the Second Polar Year and set about the evaluation
of those terms that did not vary strictly with local time, as Schuster (19o8) and Chapman
(1919) had indicated would occur, owing to the non-uniform conductivity of the upper atmo-
sphere and also the inclination of the Earth’s dipole axis to the geographic axis. Maeda (1953)
evaluated numerical coefficients for the following spherical harmonic functions:

: 0 0 1 0 1 2 0 1 2 3
dlurnal PO, 17P1}P2’P2)P2)P3:P3>P3)P3>
0 1 2 3 0 1 2 3
P4)P4>P4)P4)P5>P5)P5) 5
0 1 2 3 2
PGaP6aP6’P6,P7>

and evaluated similar spherical harmonic coefficients for the semi- and ter-diurnal terms.
Assuming a uniform upper atmospheric electrical conductivity, and a wind velocity having
potential terms P}, P3and P3, Maeda (1953) evaluated the following terms in the resulting
magnetic tide by using Schuster’s dynamo theory:

diurnal P}, P, P}, P2,
semi-diurnal P$, Pi, PY, P3, P2 P},
ter-diurnal P}, P3, P}, P2, Pi.

He then expressed the opinion that not only the velocity potentials P}, P3, P} but also P}, P3,
P3, P% P3 ‘play a fair role in the Sq field’.
Matsushita & Maeda (1965a) analysed the S, field using data from 69 observatories for the
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I.G.Y. subdivided into Lloyd’s seasons and three zones of longitude. They computed coeffi-
cients of the following spherical harmonic functions:

; 1 p1 p1 p1 pi pl pl
diurnal P%9P23P31P4>P59P6ap751_)8>
semi-diurnal P2, P2, P3, P2, P2, P2,
ter-diurnal P3 P3, P3 PE

quater-diurnal P}, Pi.

All terms are dependent upon local time only. Not all coefficients were published, but the
principal annual and seasonal terms were given together with the corresponding results pre-
viously published by other authors.

Matsushita & Maeda (19656) and Matsushita (1966) analysed the lunar magnetic tide
using data from 37 stations for various epochs. The stations were divided into three zones of
longitude as in their analysis of the solar magnetic tide. Only the lunar semi-diurnal magnetic
tide was considered and the following local time terms evaluated:

semi-diurnal P2, P2, P}, P2 P% P2 P P P%,Pi.

From the results for seasonal subdivisions of data, the authors concluded that the seasonal
change in the lunar magnetic tide was only slightly larger than for the solar magnetic tide.
Their conclusion is not in agreement with the earlier result of Chapman (1919) or with that
of Gupta & Malin (1972), or indeed, with the conclusion of the present paper.

Yaramenko (1978) computed the solar magnetic tide from 33 observatories for the I.G.Y.
years, with particular reference to low latitude and equatorial observatories. To represent
equatorial electrojet effects in magnetic tides he included higher-order spherical harmonics,
thus:

: 1 p1 pl p1 p1 p1 pL p1 pi
diurnal P, P3, P3, P, Pis, Pig, Plo, Piy, Pig,
T 2 p2 p2 p2 p2 p2 p2 p2  p2
semi-diurnal P, P§, Py, P, PYy, Pi;, P_ls, P, P,
: 3 p3 p3 p3s p3 p3 p2 p3
ter-diurnal P3, P}, P3, P%, P, P3,, P3y, P,

quater-diurnal P}, P}, P%,, P4, P}, P, Phs.

Numerical coeflicients were not given explicitly, but curves showing synthesized values were
plotted against observed values of the Fourier coefficients.

Price & Wilkins (1963) also reanalysed the Second Polar Year data. They used a surface
integral method relying upon the absence of ‘curl’ in the solar magnetic tide at the surface
of the Earth. Equivalently, they assumed that the Earth-to-air electric currents could be
ignored, or that the solar magnetic tide is purely poloidal with no toroidal component. The
method of Price & Wilkins does not produce spherical harmonic coefficients, indeed the method
was devised to avoid their use, but it does give current functions for both internal and external
fields at four-hour intervals for each of the three Lloyd’s seasons. Berdichevskiy & Faynberg
(1972, 1974), showed that the assumption of the negligibility of the toroidal component of the
solar magnetic tide was justified.

Parkinson (1971) analysed data from the I.G.Y. for the solar magnetic tide Sq only, using
four seasonal subdivisions. The number of observatories in each seasonal subdivision varied
from 42 to 54. Parkinson assumed that the $q field is zero at local midnight and included in
his analysis spherical harmonic coefficients to represent the time-independent difference
between the midnight value and that given by the sum of the first four harmonics at midnight.
The general effect of this calculation was to reduce the magnitude of the Sy current system in



GEOMAGNETIC TIDES, 1964-1965 7

the night-time hemisphere to a realistically small value. A similar calculation was made by
Malin & Gupta (1977). Parkinson (1971) also made an attempt to estimate the terms that did
not vary with local time by allowing spherical harmonic coefficients, normally averaged with
respect to longitude, to be expressed in the form a+¢ cos ¢ +d sin ¢. Terms evaluated were

constant P}, PY, P, PY, P}, P}, Py,
diurnal P}, P}, P}, P}, P§,
semi-diurnal P}, P3, P2, P2,
ter-diurnal ~ P3, P, P3, P3.

The quater-diurnal (4 ¢/d) harmonics were not analysed.

Malin (1973) analysed the solar and lunar magnetic tides using data from 100 observatories
for the interval 1957.5 to 1960.0. The data were not subdivided into seasons. The semi-diurnal
Fourier coeflicients for the lunar magnetic tide were recalculated to allow for the dynamo
action of the oceans, which are in tidal movement. Malin’s analysis included calculations of
non-local time terms more directly than Parkinson (1971) but not as extensively as Maeda
(1953). The exact choice of spherical harmonic coefficients to be included was based on con-
siderations of the non-local time field on the theory of the method of least squares, which
requires that statistically insignificant terms be excluded. The same coefficients were determined
for both the solar and lunar magnetic tides:

diurnal PS, P}, P}, P}, P% PS, Pi P2 P Pl P2
semi-diurnal P}, P}, P% P}, P% P3, P} P2 P3 Pj,
ter-diurnal P2 P% P3 Pi P3 Pi P3
quater-diurnal P, P} Pi, P3 P} P3, P;.

The same mathematical model has been used in the present analysis of solar and lunar magnetic
tides and their seasonal changes, except that a P term has been added to the semi-diurnal
terms and P} to the ter-diurnal terms.

Suzuki & Maeda (1978) presented equivalent current systems of the solar magnetic varia-
tions for December 1964, using data from 68 observatories. Only three terms were used in the
calculations, namely P}, P2 P3, with spherical harmonics analyses being made at two-hour
intervals. Numerical values of the spherical harmonic coefficients were not given. Maeda &
Suzuki (1967) and Suzuki (1973) gave spherical harmonic coefficients for the Sy field for the
I.G.Y., with particular reference to the effects of the equatorial electrojet. Their results could
be compared directly with the analysis of Matsushita & Maeda (19654). The following co-
efficients were evaluated:

diurnal P, n=1,2...,10,
semi-diurnal P2, n = 2,3,..., 11,
ter-diurnal P n=384,..12
quater-diurnal Pji, n = 4,5,...,13,

and given separately for subdivisions of Lloyd’s seasons. Suzuki (1979) analysed Sq at two-hour
intervals for December 1964, using data from 60 observatories. Local time terms only were
calculated, m = 1, n = 1, 2, ..., 8 for diurnal terms etc.

In all of the analyses mentioned the principal terms for the annual average solar and lunar
magnetic tides have been P}, P3, P}, P}, for the diurnal, and semi-, ter- and quater-diurnal
terms respectively. Some authors have also included the terms P}, P% P3, P4 and, a suitable
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normalization for the spherical harmonic functions having been chosen, such terms are appre-
ciable when compared with the corresponding coefficients P}, P3, P3, P, respectively. It will be
shown that the terms P}, P2, P} P4, are associated with the Hough function structure of winds
in the upper atmosphere. It is indeed remarkable that the magnitudes of such Hough function
terms have not been commented upon by the authors who calculated them.

It is the purpose of the present paper to analyse the most recent and most extensive tabu-
lation of hourly mean magnetic values available, i.e. those recorded during the I.Q) .S.Y. years
1964 and 1965. The analysis will include the non-local time terms arising from geographic
and auroral zone effects, and also the Hough function terms referred to above. The analysis
will be of the solar magnetic tide, the principal lunar magnetic tide, and the lunar magnetic
elliptic tide, and will include harmonic analyses of the annual and semi-annual change of the
magnetic tides. Spherical harmonic coefficients are given for phase-law tides and partial tides
(to use the nomenclature introduced by Schneider (1963)). Equivalent overhead current
systems are given for all computed magnetic tides, with the exception of long-period
terms.

2. Tne CHAPMAN-MILLER METHOD

The analysis of lunar magnetic tides is usually done by a ‘fixed-age’ method, such as the
Chapman-Miller method (Chapman & Miller 1940) or some variation (see, for example,
Winch 1970). The ‘fixed solar hour’ method of Schlapp & Weekes (1973) is also of value.
The basis of the Chapman—Miller fixed-age method is that every Greenwich day is assigned an
integer character number between one and twelve based on the rate of change of a specific
combination of astronomical parameters. Appropriate combinations are described in equations
(1)-(4). For the analysis of the principal lunar magnetic tide the character numbers are
assigned in such a way that a particular number will recur on the average, every half synodic
month of approximately 14.7653 days. One year of hourly mean values is required for the
estimation of magnetic tides free of any contribution from seasonal change and it is a standard
practice to exclude the five days in each calendar month nominated as International Disturbed
Days. Magnetic storms and magnetic activity on International Disturbed Days add approxi-
mately 50 nT noise to the data from which one is hoping to estimate a lunar magnetic tide of
amplitude only 1 or 2nT. The exclusion of only five days per calendar month is modest
compared with the rejection of almost two-thirds of the data in the analysis of solar and lunar
tides in atmospheric pressure. Chapman (1951) found that it was only by rejection of days with
large tropospheric variations that the comparatively small lunar pressure tide could be detected.

Lunar magnetic tides are estimated from magnetic hourly mean values which contain a
large solar daily magnetic variation having a very substantial day-to-day variability. Conse-
quently the reliable estimation of both solar and lunar magnetic tides requires the analysis of
many more hourly mean values than are contained in, say, half a synodic month. The analysis
of magnetic hourly mean values as if they were sea-level changes is not useful because the
mathematical form of magnetic tides is much more complex than that of the ocean tides.

Twelve groups of 25 hourly mean values are formed in the Chapman-Miller method, and
they provide a 12 x 25 array suitable for a double Fourier analysis. The 25th value in the
array is the first value of the following day and is required for the elimination of the non-cyclic
variation associated with the slow recovery of the magnetic field intensity from its diminished
level after a magnetic storm. The Chapman-Miller method then requires that linear combi-
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nations be formed amongst the Fourier coefficients in a matrix multiplication type of procedure.
The matrix is denoted D,,,s, and incorrect values given for its elements by more than one
author (including Chapman & Miller 1940) have added unnecessary difficulties to a relatively
simple calculation. The application of the D,,,s matrix gives a new set of Fourier coefficients
differing but little from those computed from the original 12 x 25 array. Hence the results
would not be seriously affected if the D,,,s array were to be replaced by a unit matrix, i.e. if
the D, calculation were not made. The present work includes the analysis of partial tides,
and a generalized complex form of the D,, ¢ matrix, denoted E,,, s (Winch 1970), has been
used throughout. However, from what has been written above it should be clear that the
L, calculation is an added refinement rather than an essential part.

To check the relevance of the Chapman-Miller method, Schlapp & Malin (1976) examined
the width of tidal lines in the geomagnetic spectrum and found them to be sufficiently narrow
for the Chapman—Miller method to be suitable for the analysis of lunar magnetic tides. Another
point in favour of the Chapman—Miller method is that it needs no special modification to deal
with missing observations. Days with, say, three or more missing hourly mean values are
simply excluded from the analysis.

The magnetic tides exhibit a very pronounced dependence upon season, being generally
much larger in local summer months than in local winter months. The seasonal dependence of
magnetic tides is often treated by subdividing the data into four seasons of three months or
into the so-called Lloyd’s seasons consisting of three seasons of four months each. Spherical
harmonic coefficients for the potential of the magnetic tide are computed for each seasonal
subdivision. The subdivision into seasons is straightforward, but as Stening & Winch (1979)
point out, is too coarse to represent the sharp changes at some observatories. Seasonal sub-
divisions also provide spherical harmonic coefficients at only four distinct frequencies. It is
possible to obtain spherical harmonic coefficients at the sixteen different ‘sum and difference’
seasonal frequencies by treating the seasonal change of a magnetic tide as just another magnetic
tide, with frequencies differing from the four standard frequencies by (plus or minus) one or
two cycles per year. By this means an electromagnetic response function for the Earth can be
obtained at more frequencies.

The calculations for the seasonal magnetic tides are made by a minor variation of the
Chapman-Miller method. For example, the 1 c/a (cycle per year) seasonal change of the
principal lunar magnetic tide is computed by using 15.3873 days and 14.1916 days for character
number repetitions, 14.7653 days having been used for the principal lunar magnetic tide. The
same type of modification makes it possible to analyse the elliptic magnetic tides associated
with the atmospheric tide N,, the principal elliptic tide to M,, the principal lunar semi-diurnal
tide. The same technique is used to analyse the seasonal changes of the elliptic magnetic tides.

Observatory hourly mean values are all tabulated in Universal Time (U.T.), with mean
values centred midway between the hours for convenience in derivation from magnetograms,
the first tabulated hourly mean value being between 0 h and 1 h U.T. It is convenient therefore
to derive, in degrees, the east longitude of the mean Moon, mean Sun and mean perigee of
the Moon, denoted s, 4, p, respectively, by using the following formulae of Bartels (1957):

s = 270.43659 +481267.891 T+ 0.00198 72, (1)
h = 279.69668 + 36 000.7689 7'+ 0.00030 772, (2)

p = 334.32956+4069.03403 7—0.01032 772, (3)
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where T is the time measured in Julian centuries of 36 525 mean solar days elapsed from 1899,
December 30.5, at which instant 7" = 0. The Universal Time ¢ is given in degrees by

t = 180+ 13149000 T (mod 360). (4)

The Explanatory supplement to the astronomical ephemeris (1961) gives formulae corresponding to
equations (1)—(3) based on Ephemeris Time. The seasonal parameter % is zero at the vernal
equinox, on about 21 March, each year. The angle s—#, being a measure of the angle sub-
tended at the Earth between the mean Moon and Sun, is a measure of lunar phase, while the
expression ¢ —s+ /& is a measure of time elapsing between successive crossings of the meridian
at a place by the Moon. The expression ¢ —s+# is therefore sometimes called lunar time and
denoted by 7.

Rates of change obtained from linear terms of equations (1)—(3) will be denoted by w, i.e.

w(2s — 4h) = d(2s—4h)/di,
or, with only linear dependence upon time,
25 —4h = wt+ const. (5)

The following rates of change will be required in the subsequent sections:

day! = 1172.22nHz,

d 1
35— 3h=p) = 5736

day-! = 720.493 nHz, O

1
@24 = 5oea

d d

— -1 -1

T (25— 3h) = . 3873day = 752.184 nHz, dt( —2h—p) = 5 6137day = 1203.91 nHz,

9 os_oh) = — 1 dayt = 783.870nHz, L (35—h— L dayt = 1235.60nHz,

at T 12765300 T %% Lo q@ ~0) =53z =

4 95— h) = —L_ day-1 = 815.558nH omy = L day1 — 31.6888nH

AR PR T T S A W) = 365940292y = 31.6888nHz,
d 1 d,. 1

————day~! = 847.247nHz, day-! = 63.3775 nHz.

d_t(2 5) = 13.6608 d_t<2h) T 182.6211

Note that the rates of change of the parameters 25 and 3s—A—p have periods close to the
second and third harmonics, respectively, of the 27-day recurrence tendency in magnetic
activity.

The basis of the Chapman-Miller method for the analysis of lunar magnetic tides is the
assigning of a character number to each day, traditionally values of 2s— 2/ only being used.
From the list of the rates of change, the character numbers from one to twelve will recur, on
average, every 14.7653 days. Much use has been made of these character numbers, and three
catalogues of them are available: Bartels & Fanselau (1938), Bartels ef al. (1954), Sugiura &
Fanselau (1966). It is so simple to compute the character numbers as required for any com-
bination of s, 4, p for any particular day that the catalogues are useful only for checking results.
The considerable variation of magnetic tides with season requires that only complete years of
hourly mean values should be analysed. If the number of mean solar days elapsed from the
epoch of equations (1)—(3) has been evaluated for the first day of a given year, it is simple to
work through the year day by day, by adding one to the day count and dividing by 36525 to
obtain the elapsed time in Julian centuries.
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The mathematical form chosen for magnetic tides depends upon the forms chosen for the
representations of atmospheric tides and of ionospheric electrical conductivity. The time-
dependence of electrical conductivity of the ionosphere K is governed by the geocentric zenith
distance of the Sun, denoted y. Thus,

cos ¥ = sin & cos & —cos § sin 6 cos t*,

where 6 is the colatitude of the sub-solar point, & is the Sun’s declination and ¢* is the local
solar time measured from local midnight. The following models for K have been proposed:

K = Ky(1+cos ) (Schuster 1908),

K = Ky(1+3 cos x+2.25 cos? y) (Chapman 1913, 1919),

K = Ky (1+2.45 cos y+2.25 cos? ) (Chakrabarty & Pratap 1954),
K = Ky(1+40.9 cos )2 (Ashour & Price 1948),

K = Ky(1+2.00cos y+1.46 cos? ) (Maeda 1956),

together with models valid for = 0, § = 0, given by Maeda (1952, 1955), Hasegawa (1950),
Hasegawa & Maeda (1951), and Matsushita (1969). For the present analysis, the time-
dependence of electrical conductivity in the upper atmosphere is represented by

4
K =K, Y a,sin (nt*+a,), (7)
n=0

where t* and «,, are the local time and phase angle in angular measure. The amplitudes a,
will be functions of colatitude, east longitude and season. Four harmonics are required in
equation (7) to enable the Fourier series to cope with the ‘step-function’ nature of ionospheric
conductivity, which increases rapidly at sunrise and diminishes rapidly at sunset.

Forbes & Lindzen (1976) use the formula

K = 0.4114 + 0.5428 cos t* 4+ 0.1368 cos 2t*
—0.0788 cos 3t* —0.0414 cos 41*

as an approximation to the day-night shape factor in local time #* variation of E-region ioni-
zation, following a cos? ¥ dependence on the solar zenith angle.

We shall be concerned with only four terms in the lunar tide generating potential. They are
given in Darwin’s notation by Doodson (1921) as

M, = 0.90812 G, cos (2t — 2s+ 2h), (8a)
O, = 0.37689 G, sin (¢ —2s+4), (8b)
N, = 0.17387 G, cos (2t —3s+2h+p), (8¢)
Q, = 0.07216 G, sin (¢ —3s+h+p), (84d)

where the geographical amplitude factors G, and G, are given by
G, =Gsin20 = £,/3GP}, G, = Gsin20 = %,/3 GP3,

where 6 is the geographic colatitude, and G is a constant. The geographical constant G,,
associated with the tides O, and Q,, is zero when 6 = }r, i.e. at the equator.

The time-dependence of M, is essentially lunar semi-diurnal but it can also be regarded as
semi-diurnal in a solar day but with a slowly varying phase angle 2s—2h. It is from such an
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analysis that the Chapman-Miller method of assigning daily character numbers based on
2s — 2/ has been derived. No matter how the tide is considered, however, the period of the tide
is still one half of a lunar day. The magnetic tide associated with M, will be denoted L(M,)
and its time-dependence is given by the product of equations (7) and (84):

6
L(M,) = ¥ 4,sin (nt—2s+2h+a,). (9)
n=-—2
Similarly, the magnetic tides associated with the tide O, will be denoted by L(O,), and have
time-dependence given by
5
L(O,) = X B,sin (nt—2s+h+5b,). (10)
n=-—3
The expression for upper atmosphere electrical conductivity varies with season, i.e. with the
parameter £, and hence it is to be expected that the seasonal change of L(M,) will have annual
component sum and difference frequencies expressible as

6
> C,sin (nt—2s+3hk+c,), (11)

n=-—2

6
and > D,sin (nt—2s+h+d,). (12)
n=-—2
However, the expression in equation (12) for a seasonal change component of L(M,) has the
same mathematical form as the magnetic tide denoted L(O,). To avoid the misleading nomen-
clature L(M,), L(O,), it seems preferable, after Winch & Cunningham (1972), to write

L(25—3k) = X E, sin (ni— 25+ 3h+e,), (13)
L(2s—2h) = 3 F, sin (nt—25+2h+£,), (14)
L(25—-h) =3 Gn sin (ﬂt—25+h+gn)a (15)

in which the magnetic tides are labelled according to the character numbers used in their
calculation, rather than according to an atmospheric tide with which it is not exclusively
associated. The magnetic tide calculation based on 4, 24, gives the 1, 2 c/a seasonal change of
the solar daily variation S. The results will therefore be denoted S(%) and §(2#).

The summands n = 1, 2, 3, 4 in equations (13)—(15) are the standard ‘phase-law’ terms.
The term n = 0 is a long-period term, while terms corresponding to negative values of n are
denoted, after Schneider (1963), as partial tides. Such tides were considered theoretically by
Chapman (1919), but never evaluated, on the ground that, compared with phase-law-tides,
their phase changed rapidly throughout a lunar month. The partial tides are not entirely with-
out interest, and a modification to the Chapman-Miller method for their calculation has been
given by Winch (1970) and applied by Rao & Sastri (1971, 1972). For mathematical and
computational convenience, the range of summation in the equations (13)-(15) representing
magnetic tides, is taken to be —4 < n < +4.

It is not appropriate to subdivide the seasonal change S(%) and S(2k) of the solar magnetic
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tide § into phase law and partial tides. Instead, the following notation will be used:

St(h) = A} sin (nt+h+ey),

1

S
- M-

S=(h) = Y Aysin (nt—h+ey),
1

S*+(2h) = A, sin (nt+ 2h+€4,),
1

S 3
IMe 3

4
S=(2h) = ¥ Az sin (nt—2h+ez,).
n=1

When computed from relatively short ‘runs’ of data, such as the two years used in the
present analysis, the partial tides may contain a significant component arising from quasi-
periodicities in the ionospheric electrical conductivity, associated with the 27-day recurrence
tendency of magnetic activity, the point being that the 27-day period of the recurrence tendency
of magnetic activity is not far removed from the 28.28-day period of the lunar month.

With the use of the expression w of equation (5), phase-law tides have the form

4
> H, {sin (n—w)t+h,}, (16)
n=1
while the partial tides can be expressed in the form
4
> J, {sin (n+w) t+7,}. (17)
n=1

The four terms that make up each lunar magnetic tide, unlike the terms of a Fourier series,
have periods that are not integer submultiples of some constant period. It is this fact that
allows four sine-terms to represent adequately a quantity depending both on local time and
on a combination of astronomical parameters that varies slowly.

Of the lunar magnetic tides described, it is standard practice to evaluate only L(2s—2#) for
various seasons and/or lunar distances (see, for example, Chapman 1915, 1918; Arora & Rao
1975). In the present work, the seasonal and lunar distance effects are dealt with by calculating
lunar magnetic tides for a range of character numbers, in particular,

(a) lunar semi-diurnal tides and seasonal changes:
L(2s—4h), L(25s—3h), L(2s—2h), L(2s—h), L(2s);
(b) lunar elliptic tides and seasonal changes:
L(3s—3h—p), L(3s—2h—p), L(3s—h—p);

(¢) solar seasonal magnetic variations:
S(h), S(2h).

Long-period tides and the solar magnetic tide S are obtained as by-products of the calculations.
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TABLE 3.1. MAGNETIC OBSERVATORIES AND THREE-CHARACTER MNEMONICS,
LISTED IN DESCENDING ORDER OF GEOGRAPHIC LATITUDE

observatory

Alert

Heiss Island
Cape Chelyuksin
Thule- Qanaq
Mould Bay
Resolute Bay
Dixon Island
Tixie Bay
Barrow
Tromso
Godhavn
Murmansk
Kiruna
Sodankyla
Cape Wellen
College

Baker Lake
Leirvogur
Dombas
Yakutsk
Nurmijarvi
Lerwick
Leningrad
Lovo

Fort Churchill
Sitka
Sverdlovsk
Rude Skov
Kazan
Moscow
Eskdailemuir
Meanook
Minsk
Stonyhurst
Wingst
Witteveen
Irkutsk-Patrony
Swider
Niemegk
Valentia
Hartland

Kiev

Dourbes
Pruhonice
Lvov

Victoria
Wien-Kobenzl
Furstenfeldbruck
Chambon-la-Foret
Hurbanovo
Yuzhno-Sakhalinsk
Tihany
Odessa-Stepanovka
Surlari
Roburent
Memambetsu
Agincourt
Vladivostok
Panagjurischte
Logrono
L’Aquila
Thilisi
Tashkent
Ebro

Coimbra

ALE
HIS
ccs
THL
MBC
RES
DIK
TIK
BRW
TRO
GDH
MRM
KIR
SOD
CWE
CMO
BLC
LRV
DOB
YAK
NUR
LER
LNN
LOV
FCC
SIT
SVD
RSV
KZN
MOS
ESK
MEA
MNK
STO
WNG
WIT
IRK
SWI
NGK
VAL
HAD
KIV
DOU
PRU
LVV
VIC
WIK
FUR
CLF
HRB
YSS
THY
ODE
SUA
ROB
MMB
AGN
VLA
PAG
LGR
AQU
TIF
TKT
EBR
CcoI

lat.

82.50
80.62
77.72
77.48
76.20
74.70
73.55
71.58
71.30
69.67
69.23
68.25
67.83
67.37
66.17
64.87
64.33
64.18
62.07
62.02
60.52
60.13
59.95
59.35
58.80
57.07
56.73
55.85
55.83
55.48
55.32
54.62
54.10
53.85
53.75
52.82
52.17
52.12
52.07
51.93
51.00
50.72
50.10
49.98
49.90
48.50
48.27

- 48.17

48.02
47.87
46.95

- 46.90

46.78
44.68
44.30
43.90
43.78
43.68
42.52
42.45
42.38
42.08
41.42
40.82
40.22

long. B

297.50
58.05
104.28
290.83
240.60
265.10
80.57
129.00
203.25
18.95
306.48
33.08
20.42
26.63
190.17
212.17
263.97
338.30
9.12
129.67
24.65
358.82
30.70
17.83
265.90
224.67
61.07
12.45
48.85
37.32
356.80
246.67
26.52
357.53
9.07
6.67
104.45
21.25
12.68
349.75
355.52
30.30
4.60
14.55
23.75
236.60
16.32
11.28

- 2.27
18.18
142.72
17.90
30.88
26.25
7.88
144.20
280.73
132.17
24.18
357.50
13.32
44.70
69.20
0.50
351.58

observatory

Toledo
Fredericksburg
Ashkabad
Almeria

San Fernando
Kakioka
Tehran
Simosato
Dallas

Tucson
Kanoya
Misallat
Tenerife
Havana
Honolulu
Teoloyucan
Alibag

San Juan
Hyderabad
Mbour
Muntinlupa
Guam
Annamalainagar
Addis Ababa
Trivandrum
Freetown
Koror
Paramaribo
Fuquene
Bangui

Moca

Tatuoca
Nairobi

Lwiro
Tanggerang
Luanda

Port Moresby
Huancayo
Apia

Arequipa
Tananarive
Tsumeb

La Quiaca
Pilar
Gnangara
Hermanus
Toolangi
Amberley
Trelew

Port aux Francais
Macquarie Island
Argentine Islands
Wilkes

Mirny
Dumont Durville
Mawson

Roi Baudouin
Sanae
Novolazarevskaya
Eights

Halley Bay
Scott Base
Vostok

Byrd Station
South Pole

TOL
FRD
ASH
ALM
SFS
KAK
TEH
SSO
DAL
TUG
KNY
MLT
SZT
HVN
HON
TEO
ABG
SJG
HYR
MBO
MUT
GUA
ANN
AAE
TRD
FTN
KOR
PAB
FUQ
BNG
MFD
TTB
NAI
LWI
TNG
LUA
PMG
HUA
API
ARE
TAN
TSU
LQA
PIL
GNA
HER
TOO
AML
TRW
PAF
MCQ
AIA
WIL
MIR
DRV
MAW
RBD
SNA
NVL
EGS
HBA
SBA
vOSs
BYR
SPA

lat.

39.88
38.20
37.95
36.85
36.47
36.23
35.73
33.57
32.98
32.25
31.42
29.52
28.48
22.97
21.32
19.756
18.63
18.12
17.42
14.40
14.37
13.58
11.37
9.03
8.48
8.47
7.33
5.82
5.47
4.43
3.35
—1.20
—1.32
-2.30
—-6.17
—8.92
—9.42
—12.05
—13.80
—16.47
—18.92
—-19.20
—22.10
—31.67
~31.78
—34.42
-37.53
—43.15
—43.20
—49.35
—54.50
—65.25
—66.28
—66.55
—66.67
—67.60
—170.43
—70.47
—-170.77
—175.23
—175.52
—177.85
—178.45
—80.00
—89.98

long. E

355.95
282.63
58.10
357.53
353.80
140.18
51.38
135.93
263.25
249.17
130.88
30.90
343.72
2717.85
202.00
260.82
72.87
293.85
78.55
343.03
121.02
144.87
79.68
38.77
76.95
346.78
134.50
304.78
286.27
18.57
8.67
311.48
36.82
28.80
106.63
13.17
147.15
284.67
188.22
288.52
47.55
17.58
294.40
296.12
115.95
19.20
145.47
172.72
294.70
70.22
158.95
295.73
111.53
93.00
140.00
62.88
24.30
357.52
11.82
282.83
333.38
166.78
106.87
240.50
0.00
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3. ANALYSIS OF OBSERVATORY DATA

The number and distribution of magnetic observatories have improved steadily since
Schuster’s (1889) first analysis of data from five observatories and, indeed, since Malin’s (1973)
recent analysis of data from 100 observatories. The availability of magnetic data has also im-
proved, particularly with the establishment of the World Data Centres. In fact, without the
active cooperation of World Data Center A in Boulder, Colorado, the analysis to be given here
would still be in the early stages of data collection.

The present analysis of geomagnetic hourly mean values for 1964 and 1965 is based on data
provided from 130 magnetic observatories, 34 in the Southern Hemisphere and 96 in the
Northern Hemisphere. Malin’s (1973) analysis used 100 observatories, 23 in the Southern
Hemisphere and 77 in the Northern Hemisphere. Each observatory has been assigned a three-
character mnemonic (1.4.G.A. News 1977), and those used are listed, along with the geographic
latitude and east longitude, in table 3.1. The distribution of observatories is shown in figure 3.1
and it is interesting to note that the cluster of observatories in Europe is now being balanced,
to some extent, by a cluster of observatories in Antarctica.

The magnetic data available for analysis consist of 79064, 78953, 83536 days of hourly mean
values for declination D, horizontal intensity / and vertical intensity Z respectively. There were
also 6047 and 6107 days of hourly mean values for the northward component X and eastward
component Y, respectively. Of the 130 observatories, 129 provided hourly mean values for the
three components or elements of the magnetic field, and one observatory, San Fernando, provided
hourly mean values for declination and horizontal intensity only. Approximately one third
of the data were available in machine-readable form on magnetic tape from World Data
Center A, while the remaining two thirds were prepared on punch cards from observatory
yearbooks and from microfilm provided by World Data Center A. Funds were provided by
the Australian Research Grants Committee. Two cards were required for the 24 three-digit
numbers that constitute one day of data, and approximately 350000 cards were prepared
and checked by double punching. This work was done at the University of New England,
Armidale, New South Wales, and took just over two years to complete.

The hourly mean magnetic values are published in monthly tables, consisting of rows of
three-digit numbers, together with a constant larger main field base value which is to be added
to each hourly mean value to give the magnetic field component correct to five significant figures.
The data, after being edited and corrected, were adjusted by the addition or subtraction of
a constant, so that the monthly base value was constant for the entire interval 1964-1965.
This procedure was intended to minimize the difficulties in computing long-period magnetic
tides, those corresponding to the summand z = 0 in equations (13)—(15).

Gaps in the data consisting of only one or two missing values were filled by linear inter-
polation, while three or more missing values were indicated by a string of nines, one missing
value in the string being indicated by the figure 9999. Publication errors noted by punch card
operators (for example, 31 days in September, no values for the interval 11 h-12h), and
those noted by the author while listing and editing the cards, were checked against magneto-
grams by World Data Center A, or by correspondence with the observatory, and corrected.
The cards were transferred to magnetic tape, one magnetic tape being for D- and X-values,
one for H- and Y-values, and a third tape for Z-values. This grouping presents no difficulties
although the grouping D, Y and H, X would have been more appropriate. The hourly mean
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values were then checked by computing all first differences, and checking all those greater
than 200 tabulated units with the published value or against magnetograms. Results were
then corrected, after correspondence, where necessary, with World Data Center A. Many
large first differences were found to be associated with magnetic storms, and no correction
was needed. All hourly mean values are published in columns in U.T. and for the calculation
the first value of the next day was added to each row of 24 hourly mean values. This 25th
value is required in the analysis for the elimination of non-cyclic variation. In practice, in lunar
magnetic tide calculations, the non-cyclic variation, corresponding to the slow recovery of the
magnetic field from a magnetic storm, is virtually negligible, but its removal has the theoretical
property that the elements of the matrix D, ,¢ used in magnetic tide analysis, have only real
values. This simplifies the resultant numerical work.

For the mathematical process of representation of the scalar potential of magnetic tides as
a linear combination of solid spherical harmonics, Fourier coefficients are required for the tides
in the components X, Y, Z. Nine observatories published results for the elements X, Y, Z
directly, while 120 published results for D, H, Z, and San Fernando published D, H only. The
equations

X=HcosD, Y =HsinD

provide the following formulae for relations between small variations in X, Y, and H, D:

AX = AH cos D—H ADsin D,
} (15)

AY = AH sin D+ H AD cos D.

For the analysis of magnetic tides from two years of hourly mean values, it is possible that
the evaluation of hourly mean values for X and Y at every observatory would introduce
rounding errors detrimental to the estimation of lunar magnetic tides, which are of the order
of the least significant tabulated figure. The H and D Fourier coefficients have been regarded
as small variations AH and AD, and equation (18) used, together with main field values of
H and D averaged over the years 1964 and 1965, to obtain the corresponding values of AX
and AY. The analysis of I.G.Y. data by Malin (1973) uses hourly mean values already expressed
in terms of components X, Y, Z.

Magnetic tapes containing the hourly mean values for 1964 and 1965 have been prepared
in standard format, having the 25th hourly value place taken by the daily average, and are
available from World Data Center A, Boulder, Colorado, on request.

The five International Disturbed Days per month have been excluded from the analysis,
but auroral or high latitude observatories and equatorial observatories have been included.
The mathematical model chosen, i.e. the spherical harmonic coefficients chosen to represent
each daily harmonic, allows the possibility of representing terms that do not vary strictly with
local time, such terms being likely to arise from auroral observatories. It was considered de-
sirable to have a global representation of the magnetic tide rather than one valid only for
certain latitudes. It was also considered desirable to have an analysis that conformed closely
to the recent substantial analysis of solar and magnetic tides by Malin (1973) for the I.G.Y.
years, which also did not exclude high latitude observatories. Numerical experiments analysing
S, S(h) and §(2k) with the 1964-1965 hourly mean values showed that the results were varied
only slightly by excluding certain groups of observatories, the equatorial and auroral groups
in particular. For these reasons, auroral and equatorial observatories were not excluded.

2 Vol. 303. A
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The Chapman-Miller method of analysis concludes with certain adjustments to amplitudes
and phase angles of computed parameters and, consequently, the output from the analysis of
observatory data for D, H, Z is in the form

AD = 3 ap, sin (mt+ep,,),
m

AH = Y ay,, sin (mt+ey,,), (19)
m

AZ = Y ay, sin (mt+e€y,,),
m

where m = n—w for phase-law tides, m = w for long-period tides, and m = n+w for partial
tides, w being defined as in equation (5). By means of the formulae

Ap, = app sin €pn,  Bp, = ap,, €OS €pp,
the Chapman-Miller output of equation (19) may be expressed in the form
AD = % (4p,, cos mt+ Bp,, sin mt),
AH = % (A g cos mt + By, sin mt), (20)

AZ = ¥ (4,4, cos mt+ By, sin mt).

The coefficients 4y, Agy, and By, By, are converted into coefficients Ax,,, 4y, and
B x ., By, with the conversion formulae given in equation (18). Hence the Fourier coefficients
for magnetic tides at all observatories are obtained in the form

AX = Y (Ax,, cos mt+ By, sin mt),
AY = 3 (4y,, cos mt+ By, sin mt), (21)

AZ = 3, (Ay, cos mt+ B, sin mt).
m .

Malin’s (1973) analysis of L(2s— 2h) phase-law tides and the solar daily variation Sq for 100
observatories evaluated only 1600 Fourier coefficients 4x,,, Bx,, etc., which can readily be
tabulated and published. For the present analysis, however, there are 94 Fourier coeflicients
obtained at each of 130 observatories, and the publication of 12220 Fourier coefficients, al-
though desirable, would be an unnecessary extravagance. The coefficients are available on
magnetic tape and a copy will be provided on request. To give some idea of typical results
of a Chapman-Miller analysis (in lieu of pages of Fourier coefficients), the results of the analysis
of magnetic tides in the northward component X, at Fiirstenfeldbruck, near Munich, have been
given in figures 3.2-3.4.

Magnetic tides at a particular observatory are functions of time and of astronomical par-
ameters varying slowly with time. Such a two-variable interpretation is the very basis of the
Chapman—Miller method of analysis, and can be used as in figures 3.2-3.4 to represent the
results of the calculation at a particular observatory. As in the Chapman—Miller calculation,
the astronomical parameters are shown as character numbers 0(= 12), 1, 2, ..., 12, corre-
sponding to 360° in angular measure. The phase-law tides for L(2s — 24), say, have terms with
arguments nt — (25 — 2h), or equivalently nt — wt or mt. Thus there are four harmonicsz = 1,2, 3, 4
for dependence on time, but only one fundamental harmonic for dependence on the astronomi-
cal parameters.



GEOMAGNETIC TIDES, 1964-1965 19

phase-law tides ' partial tides

GURE 3.2. Furstenfeldbruck, horizontal component north, lunar semi-diurnal magnetic tides
Phase-law tides: L(2s—2k)/10-2nT = Z._,ax, sin (ni—2s
Partial tides: L(25—2k)/10~2nT = X}_ bx, sin (ni+25s—2h+ fx,).



20 D. E. WINCH

In figures 3.2-3.4 contours have been plotted for magnetic tides at intervals of 0.2 nT, while
extrema are given in 0.01 nT. Contours for the annual change of S, contoured as S*(%) and
S$*(2h), are given at intervals of 0.05 nT, while extrema are given in 0.01 nT. The figures show
clearly that the magnetic tides are larger during the day when the ionospheric electrical
conductivity is greatest, and vary sinusoidally with respect to the astronomical parameters
indicated. The partial tides are generally smaller than the corresponding phase-law tides. They
are also generally smaller during the night than during the day but the difference is not as
clear-cut as for the phase-law tides. This could be due to the presence of second and third
harmonics of the 27-day recurrence tendency in magnetic activity giving long-period variations
in ionospheric electrical conductivity, contributing equally to both phase-law and partial
magnetic tides.

phase-law tides partial tides

local time/hour

Ficure 3.3. Furstenfeldbruck, horizontal component north, elliptic lunar magnetic tides.
Phase-law tides: L(3s—2h—p)/10-2nT = £} _ cx,sin (nt— 35+ 2k+p+vx,)-
Partial tides: L(3s—2h—p)/10-2nT = X2_ dx,sin (nt+3s— 2k —p+ Ox,).

The partial tide for L(3s—2h—p) is larger than the corresponding phase-law tide, and it is
difficult to see such a large partial tide arising through a tidal dynamo mechanism associated
with the N, tide. A large L(3s—2h—p) partial tide is not confined to Fiirstenfeldbruck and,
globally, it will be shown that L(3s— 2k—p) phase-law tides are about equal to the corre-
sponding partial tides. The effect may be associated with the seven to ten day periodicity found
by Shiraki (1974) and Kitamura (1979) in the position of the Sy current focus. Matsushita
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(1975) associated movements in the Sy current focus with the direction of the Interplanetary
Magnetic Field (I.M.F.), and hence the L(3s — 24 —p) partial tide could possibly be of magneto-
spheric rather than ionospheric origin.

When the Moon is at perigee s—p = 0, it is at its point of closest approach to the Earth, and
the parameter 3s—2h—p reduces to 25— 2. The similar forms of the contours for phase-law
tides L(2s— 2h) and L(3s— 2k —p) at Fiirstenfeldbruck indicate that when the phase-law tides
L(2s—2h) are evaluated for only those days for which the Moon is at or near perigee, the
extremum value will be increased from 1.20 to 1.97 nT.

local time/hour

365.25 days

182.63

Ficure 3.4. Fiirstenfeldbruck, horizontal component north, annual change of the solar magnetic tide S:
§=(k)/10-2nT = Z3_,ex,sin (nt—h+ex,);S*(h)/10-2nT = Zi_, fx, sin (nt+h+Px,);
§-(2h) /102 nT = X!, gx, sin (nt—2kh+Yx,); $*(2k)/10-2 nT = 32_ hx, sin (nt+2k+ Xxn)-

The dominance of L(2s—3k) over both L(2s—2k) and L(2s—#h) provides a simple repre-
sentation of the complex seasonal change in this component. For example, during mid-January
when % ~ 295°, corresponding to character number 10, contributions to the lunar magnetic
tide at character numbers 2s—2k = 9, 25—3k = 11, 25—h = 7 at local noon amount to
129—152—93 = — 116 units (0.01 nT). In mid-July, when 2 &~ 115° corresponding to charac-
ter number 4, contributions to the lunar magnetic tide at character numbers 2s—2k = 9,
25—3h = 5, 25—h = 1 at local noon amount to 129+ 152+ 93 = 374 units. Thus L(2s— 2h)
in X estimated at different seasons shows an apparent phase change. With the larger value for
X in local summer rather than local winter, the Fiirstenfeldbruck observatory is not included
amongst those mid-latitude and equatorial observatories that show a global enhancement of
lunar magnetic tides in January, as noted by Schlapp & Malin (1979).

From the ionospheric dynamo theory it follows that the magnetic tide L(2s— %) must contain
a part deriving from the atmospheric tide O;. In Doodson’s tide-producing potential the
amplitude of O, is only one-third that of M,, but, on considering that L(2s—#%) contains a
contribution from the seasonal change of L(2s— 2A) and yet is small, it would seem that either
the two components tend to annihilate each other or that both components are in fact small,
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i.e. L(2s—h) as a seasonal part of L(2s—2h) is small and as a dynamo tide from O, is also
small, i.e. the dynamo mechanism is not as efficient for the O, diurnal atmospheric tide as it
is for the M, semi-diurnal atmospheric tide.

The seasonal change of the solar magnetic tide § at Fiirstenfeldbruck is given by S(k)
and §(24), corresponding to the annual and semi-annual changes respectively. Both §(%) and
S(2h) have large midnight values, which further complicates the problem of the appropriate
baseline to be chosen for the analysis of the solar magnetic tide. It would seem that the
analyses of Parkinson (1971) and Malin & Gupta (1977) for differences between the mean
value and the midnight value of the Fourier series for S could also be repeated for S(%) and
S(2h).

The equality of the maxima and minima of $+(A) and $-(k) indicates that the origin of these
tides is not a dynamo mechanism involving an atmospheric tide such as K, of the form sin (¢ +£),
but rather the annual variation of ionospheric electrical conductivity applied to the expression
for the solar magnetic tide S. The occurrence of terms of the form sin 4, sin 24 in conductivity,
with sin ¢ in wind velocity, could give terms sin (¢ + 4), sin (¢ + 24).

The contours for §(%) show principal extrema just after mean sunrise at approximately
09h, and smaller extrema just after mean sunset, with a similar pattern for $(24). This pattern
is also found globally, and appears to be associated with the step-function dependence of iono-
spheric conductivity on sunlight and the variation of sunset and sunrise times throughout the year
Thus, the change of the solar magnetic tide with respect to season, as recorded on a magneto-
gram, will be greatest at 09h and 18h.

The inequalities between the extrema for S*+(24) and $~(2h) in the semi-annual change of §
indicate the possibility of dynamo action in the ionosphere as their origin. Among the possible
mechanisms are the following.

(a) The atmospheric tide K, of the form sin (2t+ 2h), or the semi-annual component of
thermally driven winds, interacts with the yearly average electrical conductivity.

(b) The tide K, of the form sin (¢+4), or the annual component of thermally driven winds,
interacts with the annually varying component of electrical conductivity.

(¢) The yearly mean thermally driven wind interacts with the semi-annual component of

electrical conductivity.
Time-dependence of tides in (a) and (4) would lead to larger S+(2k) tides than S—(24) tides,
as actually found. The semi-annual variation of §, namely $(2h) is found to be much smaller
than the annual variation §(4), and the possibility of confusion of §(%) and S(2#) at individual
observatories is discussed in §5.

4. SPHERICAL HARMONIC ANALYSIS

Spherical harmonic analyses of the sets of Fourier coefficients A x,,, 4y Azm and By,
By, By, where m indicates the number of cycles per day, obtained from the observatory

data as in equation (21), give scalar potentials 4,, and B,,,

124, 11 4, _ 4,
Aon =gy A ="Rimo g A=
_10B, 1 1 0B, _ 0B,
Bxn=5%9" Brn="Rino 04> P =
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where R is the radius of the Earth. 4,, and B,, can be represented as sums of solid spherical
harmonics:

4, =R X {(1—:)] (Ajky cos ke + Ajy sin k) )
ik
+ (7{) (Ajke cos k¢ + Aff, sin k¢); P}(cos 6),
R\i+1
B, =% {(—) (Bjl cos k¢ + B sin k)

+ (%)] (Bjke cos kp + Bk, sin k¢);P}‘ (cos 0),

(22)

where P} is an associated Legendre function, Schmidt quasi-normalized as is standard practice
(see, for example, Chapman & Bartels 1940, ch. 17, §4). (See table 4.1.) The subscripts i and e
are used to denote internal and external components, respectively.

The magnetic tidal potential corresponding to the mathematical coefficients 4,,, B,, above,
is simply 4,, cos mt+ B,, sin m¢, and if this term is denoted V,,, i.e. if

V,, = A,, cos mt+ B, sin mt,
then the term ¥, will have internal and external parts, denoted V,;, V., respectively, i.e.
Vm = Vmi+Vme‘

The solid spherical harmonic forms for V,,;, V,,, are given by:

Vuyu=RY (If)] {(4j%; cos k¢ + Ajk; sin k) cos mt
.
! + (Bjk; cos k¢ + Bjk; sin k@) sin mt} Pf(cos 0),  (23)

j
Ve =R (1%) {(4jk, cos k¢ + Ak, sin k) cos mt
’ + (Bt cos k¢ + Bjk, sin k) sin mt} Pf(cos 0). (24)

By using trigonometrical product formulae, the expression for V,,; can be written:
1 R J+1 'k "k " 1k .
s = 3R 5 (7) (A5 Bk cos (kg-+-me) + (45 + Bifa)sin (kg +mi)
s
+ (A + Biks) cos (kp —mt) + (Affs — Bjjis) sin (kp —mt)} Pf(cos 0),
and in terms of amplitudes and phase angles:

Vi=RX ( )] {4k cos (kP +mt + afns) + Bl cos (k¢ —mi + BEi)} PF(cos 0). (25)
i k

Similarly for the external component ¥,,,:

V.-1RY (1_’2)’ (Ao~ Bjke) cos (kep+mt) + (Alk + Be) sin (kg +m)
ik

+ (Ajsuo+ Biie) s (kp —mt) + (Ajfie — Bile) sin (k¢ —mt)} Pf(cos 0),

and in terms of amplitudes and phase angles:

Ve =R ( ) {A% o cos (ke +mt +okye) + Ble cos (k¢ —mt + Bfine)} Pf(cos 0).  (26)
ok
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The arguments of the various terms in equations (25), (26) must be interpreted as follows:
(a) phase-law tides, k¢ —mt = k¢p—nt +wt, ko +mt = k¢ +nt—wt;

(b) long-period tides, k¢ —mt = k¢ —wt, kp+mt = ko +wt;

(¢) partial tides, k¢p —mt = kp —nt—wt, k¢ +mt = kp +nt+wt;

where wt is to be replaced by the appropriate tidal parameters.

Cosines are used in equations (25), (26) to follow the convention introduced by Chapman
(1919).

Arguments of the form k¢ + m¢, where ¢ is east longitude and ¢ is Universal Time, corre-
spond to westward-moving phenomena, while k¢ —m¢ is the argument for an eastward-moving
effect. The magnetic tides depend indirectly on the Sun, which moves westward, and conse-
quently terms with argument k¢ + mt, namely A%, A%,;, will dominate those terms with argu-
ments k¢ —mt, i.e. Bl,,, Bf,. The distinction between eastward and westward movements
is important and there is a definite advantage in having the eastward-westward forms of
equations (25), (26) as representations for magnetic tides in place of the strictly trigonometric
forms given in equations (23), (24). Unfortunately, many authors give only four local time
terms P, in the eastward-westward form of equations (25), (26), and leave many coefficients
in the relatively useless form of equations (23), (24).

The phase-law component of the lunar semi-diurnal magnetic tide is given in equation (14) as

4
L(25—2h) = X I, sin (nt* —25+2h+A,), (27)

n=1
where * is local time. Malin (1969, 1970, 1977), Sastri & Rao (1971) and Schlapp (1977)
considered the contribution to the magnetic tide from an ocean dynamo in addition to the
ionospheric dynamo used to derive equation (17). In the ionospheric dynamo, the time-
dependence of the atmospheric tidal movements and ionospheric conductivity lead to the form
given in equation (27). For the ocean dynamo, however, the time-dependence of the ocean’s
tidal movement is that of M,. The ocean has an electrical conductivity that is independent of
local time and is sufficient to allow small electrical currents to flow in response to the e.m.fs
generated by dynamo action. The mathematical form of the ocean dynamo magnetic tide will
be, after Malin (1970) 7 90 opy _ 1 sin (26% — 254 2h 4 A,
and since it consists of only one harmonic, will in general, be non-zero at local midnight
* _ :
¢ 0, having the form I, sin (— 25+ 2h+ ).
The corresponding form of the lunar magnetic tide as calculated, by using the model equation
(27) above, at local midnight is

I, sin (—2s+2h+A,,),

Ine-

n

and, consequently, if the ionospheric dynamo with negligible electrical conductivity at local
midnight can generate a magnetic tide, then for all values of the parameters 2s — 24 the last
two expressions are equal:

when 25—2h =0, [ sinA, = L, sin A,

1

when 2s—2h = }n, [ cosA, = [, cos A,.

1

s 3
M= M-
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A lunar semi-diurnal magnetic tide of purely ionospheric origin can now be constructed:

4
Li(2s—2h) = 3 Lysin (nt—2s+2h+ A1),

n=1
where hy=1, Ag=4,
lyg = I, Agp = Ay,
lg = Uy Agq = Ay
lyycos Ay = [y cos Ay —1,cos Ay = —1, cos Ay — I3 cos A3 — 1y cos Ay,
Loy sin Agp = [y sin Ay —/ sin A, = —1; sin A; — I3 sin A3 —/, sin A,.

Similarly, because the oceans will also have a tidal component associated with N,, it is
possible to repeat the above calculations with the results of L(3s—2k—p) to derive a lunar
magnetic tide L;(3s— 2k —p) also of purely ionospheric origin.

To test the validity and relevance of the assumptions used in the calculation of the ocean
effect, it was repeated with results of L(2s— 3k), for which it is expected that there is no signi-
ficant ocean tide, diurnal or semi-diurnal, associated with the parameter 2s — 3A.

Observations of components of the Earth’s magnetic field are in fact observations of magnetic
induction B, whose SI units are teslas (T), the equivalent of 10% gauss. Hourly mean values
of the Earth’s magnetic field are published in nanoteslas, which are about equal to the order
of the observational accuracy. The nanotesla, formerly called a gamma, is equivalent to 105
gauss. Analysis of the hourly mean values leads to an ‘external’ potential V,,, given by

i
Fne = R 3. (7) (4 cos (kp+mt+ o) P, (28)

the mathematical form of which has been chosen so that the units of the evaluated amplitudes
A%, are those of the observations, i.e. nanoteslas.

A convenient way of presenting the results of the analysis is by means of an equivalent over-
head current system flowing in a sphere of radius 4. It is essentially a toroidal current system
producing the observed poloidal magnetic tide. The current system can be derived from a
scalar quantity Z called the current function, originally introduced by Maxwell (1881):

X = —-lf—nRj% (%)]% {Af e cos (ke +mt+ afne)} PF. (29)
When the Earth’s radius R is in centimetres and the amplitude 4}, in gauss, £ is in amperes.
Similarly, if R is expressed in kilometres and 4%, in nanoteslas, then £ is again in amperes.
It is a standard procedure to express the current function £ in kiloamperes. For calculation
R = 6371 km, a = 6486 km, and 4%,, is in nanoteslas.

Current function contours provide an effective means of illustrating the geographical form
of the external component of the magnetic tide and they have been much used for the solar
daily variation § and the lunar magnetic tide L(2s— 24). Attempts have been made to observe
the ionospheric current systems directly (Burrows & Hall 1964; Davis et al. 1956, 1966). In
the present analysis as well as in those of Maeda (1953), Parkinson (1971) and Malin (1973),
all of which include non-local time terms, the current functions will vary when ‘viewed from
the Sun’ as the Earth rotates about its axis. Accordingly, the current functions presented in
figures 8.1-8.12 include maps of the world.
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Current function diagrams are given for 21 magnetic tides, for two different epochs U.T. = Oh
and U.T. = 12 h; and for tidal parameter combinations of 0° and 270°, corresponding to
character numbers 12 and 9, respectively. These epochs have been chosen because the coeffi-
cients required for each involve either A’ and A", or B’ and B”, which, as noted above, are
computed separately from either A or B Fourier coefficients from each observatory.

Phase-law tide current functions
Consider the external component of the lunar magnetic tide L(2s— 2#k), phase-law terms,
given by ‘
RS (1—’{)’{( ik cos ke + ALk, sin k) cos (i — 25 + 2)
o + (B, cos kp + Bk, sin k) sin (nt— 25 + 2h)} P¥(cos 6).  (30)
When U.T. ¢t = 0h, and 25— 2k = 0°, corresponding to a 25— 2k character number of either

zero or 12, and to a lunar phase s—% = 0° or 180°, i.e. new Moon or full Moon, the external
potential of phase-law terms in L(2s— 2k) becomes

J
R 3 (5] (o A+ 455+ 435 cos kg
’ o+ (A3t + A+ Aff+ A7) sin kg} Ph(cos 0),  (31)
requiring only coefficients 4" and A", derived from the 4,, Fourier coefficients for each ob-
servatory.
When U.T. ¢ = 0h, and 25—2k = 270° the 25— 2k character number is 9, corresponding
to a lunar phase s—4 = 135° or 315°, or to a waxing half-Moon or waning half-Moon, respec-
tively. The external potential of L(2s— 2k) becomes

J
RS () B+ B+ B+ Bf) cos kg
i + (Bife + Bjz. + Bj, + Bji,) sin kg} P(cos 0),  (32)
requiring only the coefficients B’ and B”, derived from the B,, Fourier coefficients for each
observatory. The descriptions of lunar phases indicate the difficulties involved in referring to
magnetic tides in anything other than expressions such as 25— 2k in angular measure.

To illustrate the non-local time character of the magnetic potentials, a second time ¢ had
to be selected, and ¢ = 12 h was chosen. The times ¢ = 6 h and 18 h, would also show very
clearly the non-local time effects; Malin’s (1973) diagrams, for example, show an increase in
intensity of the § overhead current systems at ¢ = 6 h, 18 h. To keep the diagrams to a manage-
able number, current function contours ¢ = 0 h, 12 h only are given. When U.T. ¢ = 12 h,
and 25— 2k = 0° the external part of phase-law tides L(2s —2/) becomes

RS () (- At 45— A5+ 43 cos kg
Is II ” ” ” .
+ (= Ajlo + A, — Ajs + A7) sin kg} Pf(cos 0),  (33)
which uses coefficients 4’, 4” only, computed from 4,, Fourier coefficients.

When U.T. ¢ = 12h, and 25— 2k = 270°, the external potential of phase-law tides of
L(25 — 2h) becomes

r\J
R Zk (1—3) {( BJle‘l'B,ge Ba3e+B;4e) cos k¢
7s
+(— Bjk+ Bk — By + Bjk) sin kg} P(cos 0).  (34)

which uses coefficients B’, B” only, computed from B,, Fourier coefficients.
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Partial tide current functions

For the partial tides of L(2s— 2h), different combinations of computed coefficients are re-
quired for different epochs. Thus the external potential of partial tides of L(2s—2k) has the
form

R ( ) {(4j%, cos kp + AjE, sin k¢) cos (nt+ 25 — 2h)
j’ k’
+ (Bjk, cos k¢ + Bjk, sin k@) sin (nt + 25— 2h)} Pf(cos 0),  (35)
where the coefficients 4’, 4", B’, B" of equation (35) are as given in tables for partial tides of
L(25—2h).

When U.T. ¢ = 0h, and 25— 2k = 0° the external potential of partial tides of the lunar
magnetic tide L(2s— 2k) becomes

j
R Z;C (1%) {(4 ;1e+A,2e+A,3e+A,4e) cos k¢
7
¥ (A5l Ask+ Afk + A7) sin k) P(cos 0).  (36)

When U.T. ¢ = 0h, and 25— 2k = 270° the external potential -of the partial tides of the
lunar magnetic tide L(2s— 24) becomes

Rj};c( ){( B;)le By2e B,ae By4e) COS /i¢
, +(— B, — Bjk, — Bk, — Bjk) sin kg} Pf(cos 0).  (37)

When U.T. ¢ = 12 h, and 25—2h = 0° this external potential of the partial tides of the
lunar magnetic tide L(2s—2k) becomes

RS ( ) (= A A — AE, 4 AL cos ke
Js
(= AL AL — A% 4 ATE) sin k) Ph(cos 0).  (38)

When U.T. ¢ = 12 h, and 25— 2k = 270° the external potential of the partial tides of the
lunar magnetic tide L(2s— 2k) becomes

R 2 ( ) {( Jle BJ2e ]36 BJ4e) cos k¢
+ (Bjf, — B + Bjso — Bji;) sin k¢} Pf(cos 0). (39)

Solar magnetic variation current functions

For the solar magnetic tide, the situation is slightly different, in that there are no astrono-
mical parameters other than U.T. to be concerned with. The external part of the potential for
$ has the form

R 3 (—1%)3{( v coS kep + A7k, sin k) cos nt
s ky
’ 4 (B, cos kg + BJE, sin kg) sin nf} PF(cos 0).  (40)

Evaluation of the external potential at ¢ = 0 h gives:

R Zk (’1%) {( Jle+A:l2e J3e+AJ4e) COs k¢
7>
+ (Ajle + Ajf, + Ajf + Ajiy) sin kg} Pf(cos 0),  (41)
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involving only 4’ and 4" terms computed from A,, Fourier coefficients for the solar magnetic
tide S.
Evaluation of the external potential at U.T. t = 12 h gives

J
R 3, (g) (- A5+ i~ A5+ 435) cos g
7 ” ” /I ” .
+ ( "—Af{ce +A.’i£ce }éce A}fe) sim k¢} P}C(COS 0)’ (42)

again involving only 4" and 4", as computed from A4,, Fourier coeflicients and, consequently,
neither the # = 0h nor ¢ = 12 h contoured current functions of § have made use of the results
from the analysis of B,, Fourier coefficients. In fact, there is no single instant at which the
external potential of § involves only B’ and B” computed from B,, Fourier coefficients.

TABLE 4.1. SCHMIDT QUASI-NORMALIZED ASSOCIATED LEGENDRE FUNCTIONS
OF THE FIRST KIND P(cos 0)

P)=cos, P}=sin0, PJ= }(3cos?f—1)

P} = 3sinfOcosl, P:= }/3sin20, P = 4(5cos®0—3 cosb)
P} = }J/6sinO(5cos2 0—1), P2 = 1,/15sin%6 cos §

P3 = }J/10sin® 0, P) = }(35 cos* 0—30 cos? 0+ 3)

P} = $J/10sin 0(7 cos® 0 —3 cos 0), P2 = 1,/5sin% 0(7 cos® 0—1)
P} = }J70sin® 0 cos 0, P} = }/35sin*0

P? = }(63 cos® —170 cos® 6+ 15 cos 0)

P} = £/15sin 6(21 cos* 0 — 14 cos? 0+ 1)

P? = }/105sin% 0(3 cos® 0 —4 cos 0), P = %./70 sin® 6(9 cos? 6—1)
P! = $/35sin*0cos§, P§= 314 Sin5 0

P} = (231 cos® 0 — 315 cos?* 6+ 105 cos? §—5)

P = -1 sin 0(33 cos® 0 — 30 cos® 6+ 5 cos 0)

P} = ‘azx/210 sin? (33 cos* 6 — 18 cos® 0+ 1)

P} = %,/210 sin® 6(11 cos® 0 — 3 cos 0)

P} = 3. /7sint O(11 cos? 60— 1), P = %154 sin® 0 cos 0

P“ = 3%,/462 sin® 0.

5. DISCUSSION OF RESULTS

Current function contours for the lunar magnetic tide L(2s— 2k) are given in figures 8.1a
and 8.4a. Contours in figure 8.14 are based on spherical harmonic coefficients in which the

= 2 semi-diurnal terms have been derived from the n = 1, 3, 4, terms by using the ocean
dynamo calculation of Malin (1970). It will be seen that the pattern of figure 5.14 is closer
to the four-cell pattern commonly associated with the lunar magnetic tide (see, for example,
Matsushita 1966), and it appears that there is a smaller current intensity at midnight in the
contours freed of the ocean dynamo contribution.

From table 8.4 the dominant semi-diurnal local time terms in L(2s— 24), including contri-
butions from the ocean dynamo, are

280 cos (2¢* — 25+ 2k + 240°) P2+ 69 cos (2¢* — 25 + 2k + 79°) P2, (43)

where amplitudes are in pT and #* = ¢+ ¢ is the local time. The corresponding terms given
in table 8.1, evaluated from the 1, 3, 4 c/d terms, by using the ocean dynamo calculation of
Malin (1970), are

254 cos (2t* — 25+ 2h+ 261°) P3+ 108 cos (2¢* — 25+ 2k + 79°) P2. (44)
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The difference of phase angles between the ocean-dynamo-free terms of equation (44) is
much closer to 180° than the phase difference for the same terms in equation (43). Note also
that the phase of the P2 term in equation (44) is closer to 270° than the phase of the same
term in equation (43). The Hough function representation of wind velocity requires the phases
of the P} and P} coeflicients either to be the same or to differ by 180°. The time dependence
of the P} term may be written as cos (27+261°) where 7 = #* —s+4 is the local lunar time
and will have extrema at 7 = 50°, 140°, 230°, 320°, when the observatory is midway between
high tide and low tide, and when the ionospheric wind speeds are likely to be greater than at
other times.

Expressions corresponding to equations (43), (44) for the lunar elliptic tide L(3s— 24 —p)
are given in tables 8.8 and 8.1 respectively:

61 cos (2t* —3s+ 2k +p+ 250°) P53+ 17 cos (2t* —3s+ 2k +p+ 97°) P}, (45)
which includes a contribution from the dynamo effect of the N, ocean tide, and
84 cos (2t* — 35+ 2h+ p +284°) P+ 17 cos (2¢* —3s+ 2k +p + 109°) P2 (46)

with the ocean dynamo contribution removed. Again the phase angle difference in the ocean-
dynamo-free terms of equation (46) is closer to 180° than the phase angle difference given by
the terms of equation (45) that include an ocean dynamo contribution. The phase angle of
the P} term in equation (46) is closer to 270°. These results show the validity and the impor-
tance of applying Malin’s ocean dynamo calculation to magnetic tidal results to obtain more
useful, physically significant results.

The ocean dynamo effect calculation described above was repeated with results for the
seasonal variation L(2s—3k) of the lunar magnetic tide L{2s— 2A). Semi-diurnal Fourier co-
efficients for L(2s — 3k) were computed by using the remaining three pairs of Fourier coefficients,
on the assumption that the magnetic field should be zero at local midnight. Spherical harmonic
coeflicients computed from such semi-diurnal coefficients were virtually identical with those
from the original semi-diurnal coefficients, thereby providing further evidence of the value of
Malin’s ocean dynamo calculation and of the validity of the assumptions involved. The diurnal
term of the lunar magnetic tide L(2s—#) could possibly contain an ocean dynamo component
from the O;-tide. However, the ocean dynamo calculation was not applied to L(2s—#).

Principal lunar magnetic tide L(2s — 2h)

The principal external phase-law terms for L(2s— 24) for 1964-65 (quiet Sun) are given in
table 8.1, and the corresponding results of Malin (1973) for 1957-60 (active Sun) are given
in table 8.14. For comparison the principal terms P, from both analyses are collected in
table 5.1, together with the corresponding local time terms P7 5. Both sets of terms are west-
ward moving and antisymmetric about the equator. The terms P}, ; are well known from the
point of view of the ionospheric dynamo theory, while the terms P 3 have their origin in the
Hough-function structure of atmospheric tides.

The only dynamo theory available that gives theoretical expressions for the 1, 2, 3, 4, ¢/d
local time terms P}, P3, P}, P}, by using a semi-diurnal wind velocity potential P and a time-
dependent ionospheric conductivity, is that of Chapman (1913). The theory uses conductivity
k in the form

k = 1+3cos x+2.25 cos? y = (142 cos x)?
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which has the property that the conductivity is never negative. Baker & Martyn (1952)
showed that the analysis included equatorial observatories provided that the conductivity
was taken to be the height-integrated Cowling conductivity o7.

Current theories of wind systems in the upper atmosphere refer to modes of oscillation rather
than to individual terms with potential, say, P3. The modal structure comes about when the
Coriolis force term is included in the equations of motion for the oscillations of the atmosphere.
It is found that eigenfunctions can be determined given by a linear combination of spherical
harmonics P, P}y, P14, ... . Such eigenfunctions are often referred to as Hough functions,
after Hough (1898) who first derived them.

TABLE 5.1. PRINCIPAL LOCAL TIME PHASE-LAW TERMS
FOR THE LUNAR MAGNETIC TIDE L (25— 2h)

196465 ' 1957-60
terms of the form P2, 174 cos (t* — 25+ 2k +86°) P} 338 cos (1% — 25+ 2k +94°) P}
254 cos (2¢% — 25+ 2h+ 261°) P32 497 cos (2t* — 25+ 2h+ 273°) P}
134 cos (3t* — 25+ 2k + 93°) P3 189 cos (3t* — 25+ 2k + 101°) P3
42 cos (44* — 25+ 2h 4 272°) P% 39 cos (4t* — 25+ 2k +266°) P}
terms of the form P74 117 cos (¢* — 25+ 2k + 245°) P} 151 cos (t* — 25+ 2h+270°) P}
180 cos (2t* — 25+ 2k + T9°) P2 not calculated
61 cos (3t* — 25+ 2h+ 314°)P3 not calculated

The dominant lunar semi-diurnal wind velocity mode in the ionospheric E region is con-
sidered to be the (2, 2) mode (see, for example, Tarpley 19704, 5). In §6 of the present work
this mode is denoted M,(2, 2), where the prefix M, indicates in Darwin’s tidal notation the
appropriate lunar semi-diurnal gravitational tide. Represented as a sum of Schmidt normalized

functions M,(2,2) = P2—-0.374713 P2+ ... .

It will be seen that P} is the dominant spherical harmonic in the (2, 2) mode, and hence the
dynamo theory of Chapman (1913) is still relevant.

A simplified form of the ionospheric dynamo theory, with the assumption of an axial geo-
magnetic dipole and uniform ionospheric electrical conductivity, indicates that the magnetic
tide associated with the (2, 2) mode will have a potential proportional to —P3+0.1518 PZ.
Thus the P lunar semi-diurnal tide expressed as a cosine as in table 5.1 is expected to have a
phase of 270°, and similarly the P term is expected to be 180° out of phase with P% From
table 5.1, it is found that the phase of the P} term is 261°, and that the phase angle difference
between the P§and P} termsis 178°. Theamplituderatio for theterms, P2/P} = 108/254 = 0.425,
differs from the ratio 0.1518 indicated by the theory, but as shown in §6, the presence of other
tidal modes, in particular the (2, 4) mode, can be inferred and used to give the precise ampli-
tude ratio.

To examine the relevance of the theory of Chapman (1913) for the interpretation of the
results of the present analysis, a constant £ was taken as a coefficient of proportionality, and
in terms of Schmidt-normalized spherical harmonics, the ratios of the four principal local time
terms were obtained as shown in table 5.2. With a value 4.142 for the constant £, it will be
seen from table 5.2 that Chapman’s dynamo theory provides an adequate representation of
the principal local time lunar magnetic tides as observed. A minor improvement could be
effected by using the expression 1+ 2.7 cos y+ 2.25 cos? y for the ionospheric conductivity.
This expression also has the property of never being negative.
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It has been noted that the principal local time terms of the form P}, are antisymmetric
about the equator. The antisymmetry arises from a combination of the wind velocity potential
P32 which is symmetric about the equator and the antisymmetric nature of the vertical com-
ponents of the Earth’s main magnetic field with a potential of the form P{.

TABLE 5.2. APPLICATION OF CHAPMAN’S (1913) DYNAMO THEORY

Py P Py Py
theory (Chapman 1913) 44k 51k 33k 9%k
present results, table 5.1 174 254 134 42
calculated with £ = 4.142 194 224 145 41

TABLE 5.3. AMPLITUDE RATIOS AND PHASE ANGLE DIFFERENCES FOR PRINCIPAL LUNAR
LOCAL TIME TERMS FOR ACTIVE SUN YEARS AGAINST QUIET SUN YEARS

Py P} Py . Pg
amplitude ratios (+0.1) 1.9 2.0 1.4 0.9
phase angle differences/deg 8 12 8 -6

In the absence of a coefficient of P% for the I.G.Y. years it is not possible to determine the
combination of wind velocity modes (2, 2) and (2, 4) for years of high sunspot number for
comparison with the known combination for low sunspot number. However, given the weakness
of the (2, 4) mode as a generator of magnetic tides and the dominance of the P} lunar magnetic
tide generated principally by the P3 term in the wind velocity potential, it will be assumed
for the purpose of the argument that the lunar semi-diurnal wind velocity mode is principally
the (2, 2) mode in years of either low or high sunspot number. If the magnitude of the (2, 2)
mode were to be increased in years of high sunspot number, then all local time terms P3, P},
P3, P%in the magnetic tidal potential would increase in the same ratio. It is clear from table
5.3 that they have not all increased in the same ratio. Indeed, one term, P§, remains virtually
unchanged in amplitude. It must be concluded, therefore, that there is no change in the
intensity of the atmospheric lunar semi-diurnal wind mode (2, 2) through the sunspot cycle.

The lunar atmospheric tide is generated in the lower, denser layers of the atmosphere and
propagated upwards with increasing amplitude through the higher layers. It is very sensitive
to the rate of decrease of temperature in the mesosphere (corresponding to the ionospheric D
region). Belmont et al. (1974) have proposed that particle precipitation associated with mag-
netic activity would produce atomic oxygen by dissociation of O,. Thus an increase in ozone
concentration would occur in the mesosphere leading to higher temperatures, stronger winds
and changes in the temperature profile because of increased solar u.v. absorption. The proposal
could lead to a variation in lunar atmospheric tides with increasing magnetic activity. However,
Callis ef al. (1979) reported that ozone over selected North American stations increased at a
rate of 4-8 %, per decade during the 1960s and noted other increases at other stations around
the globe. Thus, only a slight increase in ozone concentration has been found, and, given the
mechanism of Belmont ef al. (1974), it would seem reasonable to expect only a slight variation
in the intensity of lunar atmospheric tidal winds with increasing magnetic activity. This has
already been inferred from the response of the principal local time terms of L(2s—2A) to
increased sunspot number.
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To derive the different amplitude ratios for the principal local time lunar magnetic tides,
the following models of height-integrated ionospheric conductivity are required:

kK = 1+2.7cos y+2.25 cos? x¥, low sunspot number,

K = 2+4.2 cos x-+2.25 cos? ¥, high sunspot number.

A consequence of the different models would be that the relative variation of the lunar mag-
netic tide with respect to season would be less in years of high sunspot number than in years
of low sunspot number.

The phase angle differences in the principal local time terms from years of high sunspot
number to years of low sunspot number represent an advance of phase with respect to increasing
sunspot number. Given the uncertainty in the level at which the lunar ionospheric dynamo
operates, it is difficult to propose a suitable mechanism. It could, for example, be the result
of the lack of symmetry with respect to local noon of the recombination rate of electrons and
ions at the ionospheric lunar dynamo level, varying with sunspot number.

Chapman’s (1919) work included the dynamo theory of magnetic tides and gave theoretical
results for what are called partial magnetic tides in the present paper. Chapman (1919) did
not evaluate the partial tides directly from the limited observational data available, but, by
means of the dynamo theory, showed that the partial tides should be small and that the diurnal
partial tides would be the largest of the four daily harmonics. The results given in table 8.4
confirm these predictions. From figures 8.1 and 8.4 the L(2s—2#) lunar magnetic partial
tides are seen to be much smaller than the corresponding phase-law tides. They vary consider-
ably from one lunar phase to another. They are largest during daylight. The net current
circulation of the partial tides current systems is generally less than one third of the correspond-
ing phase-law system. The separation into internal and external parts of the partial tides has,
however, for the more significant terms, been accurate enough to permit the use of the results
in induction studies.

The lunar magnetic tide L(2s—24) includes phase-law and partial tides that are diurnal,
zonal and dependent upon U.T. Such terms are listed in table 5.4. The partial tide listed in
table 5.4 has the largest amplitude of any of the partial tides listed in table 8.1 for L(2s—2h).
The combination of the largest zonal U.T. phase-law and partial tides for 196465 in table

5.4 is given by _
190 cos (t —2s + 2k +152°) P} + 200 cos (¢+ 25 — 2k + 167°) PY,

which, to a good approximation, is equal to
(190 P3+200 PY9) cos (25— 2h) cos (¢+160°).

The U.T. component indicates an association with the motion of the Earth’s magnetic axis
about the geographic axis. The factor cos (¢4 160°) is maximized when ¢ = 200° (equivalently
U.T. 13.33 h), when the Sun is 20 °W of Greenwich and some 50 °E of the meridian on which
the Earth’s geomagnetic dipole axis (or the most southerly point of the zone of maximum
auroral frequency) lies. The cos (25 —2k) term is more likely to be associated with the second
‘harmonic’ of the 27-day recurrence tendency in sunspot than it is with any effect associated
with lunar phase 2s5—24. The initial factor 190 P+ 200 PY is greater in northern than in
southern latitudes and is greatest at the North Pole.
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In addition to the Pj,; equator-antisymmetric local time terms, the phase-law tides of
L(2s~2h) also include some smaller equator-symmetric sectorial terms Pj, listed in table 5.5.
The sectorial terms, both phase-law and partial, come into phase at local noon, * = 180°,
when the equivalent overhead current system for these terms will have a single focus on the
equator, directly beneath the Sun. Sectorial magnetic tides may arise through the interaction
of a P{ or cos § component of ionospheric conductivity with the electric fields that give rise
to the principal local time terms Pj,; when the ionospheric conductivity is constant. The
combination of sectorial phase-law and partial tides can arise only through a long period
25 — 2k modulation of the P$ component of ionospheric conductivity, associated more with the
second ‘harmonic’ of the 27-day recurrence tendency in magnetic activity than with the semi-
synodic month 2s— 24.

TABLE 5.4. DiurNAL, zoNAL, U.T.-DEPENDENT TERMS IN L(2s — 2A)

1964-65 1957-60
phase-law tides 91 cos ({— 25+ 2k+ 300°) P} —
190 cos (¢— 2s+ 2h+ 152°)P} 132 cos (¢— 25+ 2h+ 191°) P}

— 102 cos (¢— 25+ 2h+347°) P3
72 cos (t—2s+2h+ 3°) P} —

partial tides 200 cos (¢+25—2k+ 167°)P? not calculated

TABLE 5.5. SECTORIAL LOCAL TIME PHASE-LAW TERMS IN L(2s— 24)

1964-65 1957-60
phase-law tides 33 cos (¢* — 25+ 2h+ 157°) P} 91 cos (#* — 25+ 2k + 159°) P}
69 cos (2t* — 25+ 2h+ 297°) P} 103 cos (2t* — 25+ 2k + 338°) P2
48 cos (3¢* — 254 2k + 120°) P3 45 cos (3t* — 25+ 2h+ 112°) P3
9 cos (4¢* — 254 2k + 330°) P} —
partial tides 49 cos (t*+ 2s—2k+ 185°)P1 not calculated
46 cos (2t* 4 25— 2h+53°) P2 not calculated
25 cos (3t* 4 25— 2k +271°)P3 not calculated
15 cos (4t* + 25— 2h+ 142°)P% not calculated

The principal lunar magnetic tide L(2s— 2k) includes very significant non-local time terms
P}, westward moving, sectorial and symmetric about the equator, as listed in table 5.6. With
2y = 25—2h, t* = t+¢, t = U.T., the time dependence of the sectorial non-local time terms
may be written

nt*—2v—t, n=2,8,45 and n*-2v+t, n=1,23,
indicating a U.T. modulation of a local time lunar magnetic tide. The amplitude of the P}
term, being 219 pT, is almost equal to the amplitude of the principal local time term P3, at
254 pT. The sectorial form and symmetry about the equator of the P} non-local time terms
cause considerable distortion of the current systems associated with the principal local time
terms PZ_, that are anti-symmetric about the equator.

Although the non-local time terms of table 5.6 show a U.T. variation, they also contain a
strong dependence upon local time, because the sectorial terms come into phase in two separate
groups at local noon, ¥ = 180°, as indicated in table 5.7. The two separate groups of terms
come into phase at U.T. ¢ = 98° and 278°, corresponding to U.T. 06h30, and 18h30
respectively. At these times the Sun is over the Indian Ocean and over the eastern Pacific
Ocean respectively.

3 Vol. go3. A
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The non-local time terms show no consistent increase in amplitude from years of low to years
of high sunspot number. The first group of four in table 5.6 shows phase angles retarded by
approximately 60°, while the second group of three shows phase angles retarded by approxi-
mately 30°. The phase angle differences are much greater than those for the principal local
time terms, indicating that they arise through secondary effects, e.g. the influence of land topo-
graphy and ocean distribution on either the mesospheric temperature profile or wind systems
(Chapman & Lindzen 1970, p. 157; Beer 1974, p. 237), or the induction of current systems
in the highly conducting oceans.

The partial tides for L(2s— 2k) also include significant local time and non-local time terms,
as given in table 5.8. Other partial tides given in tables 5.4 and 5.5 are associated with magnetic
disturbance rather than any lunar effect. '

TABLE 5.6. WESTWARD-MOVING, EQUATOR-SYMMETRIC, NON-LOCAL TIME TERMS
IN L(2s5 — 2h)

1964-65

99 cos (2¢+ ¢ — 25+ 2+ 181°) P2
159 cos (3¢ + 2t — 25+ 2k + 3°) P2
108 cos (4¢ + 3t — 25+ 2k + 203°) P}

217 cos (5¢ + 4t — 25+ 2k + 32°) P8

219 cos (p+ 2t~ 25+ 2k + 167°) P}
147 cos (2¢ + 3t — 25+ 2k + 345°) P2
35 cos (3¢p+ 4t — 25+ 2+ 146°) P3

153 cos (¢ +2t— 25+ 2k + 332°) P}

of the form P?

of the form P2,

1957-60

120 cos (2¢ + ¢t —2s+ 2k + 127°) P}

132 cos (3¢p+ 2t — 25+ 2+ 300°) P3
54 cos (4¢ + 3¢ — 25+ 2h+ 119°) P4
20 cos (5¢ + 4t — 25+ 2k + 316°) P2

123 cos (¢ + 2t — 25+ 2k + 135°) P}
144 cos (2¢ + 3t— 25+ 2k + 303°) P2
24 cos (3¢ + 4t — 25+ 2h+ 111°) P3

198 cos (¢ +2t— 25+ 2h+40°) P}

TaABLE 5.7. NON-LOCAL TIME TERMS IN L{2s5— 2/) AT LOCAL NOON

1964-65

99 cos (—{—2s+ 2k + 181°) P}
159 cos (—t—2s+ 2k + 183°) P}
108 cos (—t— 25+ 2h+203°) P4

27 cos (—t—2s+ 2k +212°) P}

219 cos (t— 25+ 2k + 347°) P}
147 cos (t— 25+ 2h+345°) P2
35 cos (t—2s+ 2h+ 326°) P§

of the form P7

1957-60

120 cos (—t—2s+2h+127°) P}
132 cos (— t— 25+ 2h-+ 120°) P3
54 cos (—t—2s+2h+119°) P}
20 cos (—t— 25+ 2h+ 136°) P}

123 cos (t— 25+ 2h+315°) P}
144 cos (¢— 25+ 2k +303°) P2
24 cos (t—2s+2h+291°) P3

TABLE 5.8. SIGNIFICANT PARTIAL TIDES IN L(2s— 2A)

local time terms 45 cos (4% + 25— 2h+ 251°) P

73 cos (£* + 25— 2k + 132°) P1
61 cos (¢ +2t+ 25— 2h+ 184°) P (westward-moving)

22 cos (2¢+ 3t+ 25— 2h+13°) P2 (westward-moving)
62 cos (p—t+ 25— 2h+233°) P} (eastward-moving)

non-local time terms

The solar magnetic tide S

The principal external terms for the solar magnetic tide for 1964-65 are given in table 8.10,
and the corresponding results given by Malin (1973) for 1957-60 are given in table 8.14. For
comparison the principal terms are collected together in table 5.9. As with the lunar magnetic
tide the principal local time terms are of the form P, and are antisymmetric about the
equator. They are accompanied by local time terms of the form Pj ; which are also anti-
symmetric about the equator and which have their origin in the Hough-function structure
of atmospheric tides.
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The phase angles of the principal terms in the solar and lunar magnetic tides give an indi-
cation of their thermal and gravitational origins respectively. The modulus of the principal
solar term, cos (¢* 4 19°) P}, is greatest when ¢* = 161° or 341°, the day-time value occurring
about one hour before local noon (¢#* = 180°). The four principal local-time solar magnetic
tidal terms will be in phase at approximately ¢* = 180°. The times of maxima and minima
refer to the time when the overhead current system focus crosses the local meridian. The
principal lunar term, cos (27 +261°) P3, has extrema at local lunar times 7 = 50°, 140°, 230°,
329°, occurring when the local meridian is midway between the maxima and minima of the M,
tide-producing potential. The lunar term can be compared with the tide 0.93 cos (27 + 202°) km
found by Appleton & Weekes (1939) in the movement of the height of the lower boundary of
the E region.

TABLE 5.9. PRINCIPAL LOCAL TIME TERMS OF EXTERNAL ORIGIN
FOR THE SOLAR MAGNETIC TIDE

196465 1957-60
terms of the form P2, 6146 cos (¢*+19°) P} 12213 cos (¢*+17°) P}
2922 cos (2¢* +197°) P2 5953 cos (2t* + 182°) P}
1168 cos (3¢* +33°) P3 2144 cos (3t* + 16°) P3
238 cos (4¢* +215°) P} 420 cos (4t* + 209°) P4
terms of the form P74 1100 cos (t* + 161°) P} 2928 cos (¢* + 160°) P}
281 cos (2t* +47°)P2 not calculated
67 cos (3t* +224°)P3 not calculated

TABLE 5.10. AMPLITUDE RATIOS FOR PRINCIPAL LOCAL TIME TERMS
OF SOLAR AND LUNAR MAGNETIC TIDES

solar S/lunar L(2s—2h) P} P pP3 P
low sunspot number 35+2 11.54+0.5 8.74+0.3 5.7+0.4
high sunspot number 36+2 12.0+0.5 11.34+0.5 10.84+0.9

TABLE 5.11. AMPLITUDE RATIOS AND PHASE ANGLE DIFFERENCES FOR THE SOLAR
MAGNETIC TIDE FOR ACTIVE SUN YEARS AGAINST QUIET SUN YEARS

solar magnetic tide § P} P2 P3 P
amplitude ratios (+ 0.5) 1.99 2.04 1.84 1.76
phase angle differences/deg —12 —15 —17 —6

The dominance of the diurnal P} local time term in the solar magnetic tide and the semi-
diurnal P% local lunar time term in the lunar magnetic tide gives the basic current system
configurations shown in figures 8.1 and 8.10. Both systems are antisymmetric about the equator;
the P} solar term gives single foci in both the Northern and Southern Hemispheres, while the
P2 lunar term gives pairs of foci in both the Northern and Southern Hemispheres.

Amplitude ratios of the principal local time terms of the solar and lunar magnetic tides are
given in table 5.10. The amplitude ratios show that the diurnal term P3 in the solar magnetic
tide S is three times as great as would be expected if the solar atmospheric tide were of the
form P3% only, or in terms of present day theory, an atmospheric tidal mode of the form (2, 2).
Chapman’s (1913) dynamo theory shows that a P} atmospheric tidal potential gives rise to a
magnetic tide of the form P} with only minor contributions to the terms P§ and P3. It is clear
therefore that the wind velocity producing the solar magnetic tide has a scalar potential
consisting of a combination of terms Pi and P3.

3-2
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Amplitude ratios and phase angle differences for the solar magnetic tide for active Sun
years against quiet Sun years are given in table 5.11. The different response of the amplitude
of the P# local time term in lunar and solar magnetic tides to the sunspot cycle, together with
the phase angle advance of the local time terms of the lunar magnetic tide and the retardation
of phase of the corresponding solar local time terms, and the different variation of solar and
lunar magnetic tides with respect to season (yet to be discussed), has led to the conclusion that
solar and lunar magnetic tides are produced at different levels in the ionosphere (see, for
example, Gupta & Malin 1972; Malin e al. 1975).

Chapman & Bartels (1940, p. 762) noted that if the solar and lunar ionospheric wind veloci-
ties were in the same ratio to one another at all heights, then their magnetic effects would be
in the same ratio, and the solar and lunar magnetic tides would be produced in the same
conducting layer. They concluded that the differences between the solar and lunar magnetic
tides implied that there were important variations in the relative magnitudes of the solar and
lunar ionospheric winds at different heights. The height-dependent structure of atmospheric
tides inferred by Chapman & Bartels is associated with the modal structure of wind velocity.
The theory of atmospheric tides (see, for example, Chapman & Lindzen 1970) indicates that
the variation with height of the different modes depends upon the variation of temperature
with height, particularly in the mesosphere (i.e. the D region). For the modes that generate
magnetic tides, Kato (19664, b)) and Lindzen (1966) suggested a diurnal negative mode
denoted (1, —2) for the solar magnetic daily variation, while Stening (1969) and Tarpley
(19704, b) found that the (1, —2) mode produced a solar magnetic tide very similar to the
observed magnetic tide. It will be shown in §6, however, that a further mode, the (1, 1)
mode, is required to give the phase angle differences of 180° observed between the local time
terms P} and P} in the solar magnetic tide.

The different modal structure of the solar and lunar semi-diurnal tides is indicated in the
present analysis by the ratio of the local time terms P:/P% The ratio is 281/2922 = 0.096
for the solar magnetic tide and 108/254 = 0.425 for the lunar magnetic tide. This considerable
difference is discussed further in terms of (2, 2) and (2, 4) modes in §6. In the absence of
coefficients for P2 for solar and lunar semi-diurnal magnetic tides in the analysis of Malin
(1973), it is not possible to determine if the modal combination of tides (2, 2) and (2, 4)
changes with respect to sunspot activity or increases in some direct proportion. It is therefore
essential that the coeflicient of the local time, semi-diurnal magnetic tide P term for both
solar and lunar magnetic tides be determined.

Because the P} diurnal local time term for the solar magnetic tide increases by a factor of
1.76 throughout the sunspot cycle, it cannot be inferred, with the assumption that the (2, 2)
mode remains the dominant wind velocity mode, that the thermally generated ionospheric
wind velocities producing the solar magnetic tide remain invariant. In fact they could increase
by up to a factor of 1.76 throughout the sunspot cycle. Matsushita (1967) considered the rates
of increase of solar and lunar magnetic tides with respect to the electron density Ne, and sun-
spot number 5: Ne = 1.24 x 104 (4.38 x 10-3 §+ 3.04)2,
and concluded that the wind velocities increased by a factor of 1.4. Given such an increase,
the electrical conductivity of the relevant ionospheric dynamo layer need not increase by a
factor of 2.0 as required for the lunar magnetic tides, but only by a factor of approximately
1.6. Thus it would appear that the conductivity of the solar dynamo region is less sensitive to
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changes in sunspot number than the lunar dynamo region. The opposite conclusion is obtained
if it is assumed that the solar and lunar ionospheric winds are independent of sunspot number
(see, for example, Malin 1971).

The following models of height-integrated ionospheric conductivity are required for use in
Chapman’s dynamo theory to produce the observed solar and lunar magnetic tides:

low sunspot number, « = 1.0+2.7 cos y+2.25 cos? y (solar, lunar),
high sunspot number, « = 1.6+4.2 cos y+3.60 cos? y (solar),

K

i

2.0+4.2 cos Y +2.25 cos? ¥ (lunar).

Depending upon the value chosen for the amplification factor for ionospheric solar winds,
somewhere between 1.00 and 1.76, the conductivity model to be used for the solar magnetic
tide at high sunspot number could vary from 1.0+ 2.7 cos ¥ +2.25 cos? ¥ to 1.8 +4.9 cos x +
3.96 cos? y.

TABLE 5.12. EQUATOR-SYMMETRIC LOCAL TIME TERMS IN THE SOLAR MAGNETIC TIDE

196465 1957-60
terms of the form P? 1019 cos (¢* +81°) P} 1359 cos (t* +55°) P}
1102 cos (2t* +268°) P§ 1307 cos (2t* +254°) P2
457 cos (3t* +104°) P} 521 cos (3t* +93°) P}
174 cos (4t* 4 302°) P} 171 cos (4t* +267°) P}
terms of the form P2, 454 cos (t* +202°) P} 1071 cos (t*+171°) P}
371 cos (2t* +256°) P2 696 cos (2¢* +347°) P2
201 cos (3¢* +69°) P2 146 cos (3t* + 119°) P
102 cos (4t* +258°) P} 143 cos (4t*+276°) P

TABLE 5.13. RESPONSE OF EQUATOR-SYMMETRIC LOCAL TIME TERMS IN
THE SOLAR MAGNETIC TIDE TO INCREASED SUNSPOT NUMBER

solar magnetic tide § P} P P3 P}
amplitude ratios (+0.3) 1.4 1.2 1.2 1.0
phase angle differences/deg —23 —14 —11 —35

The solar magnetic tide includes a group of local time terms that are symmetric about the
equator. Some are sectorial of the form P7, and there is a corresponding group of terms of the
form Pj_,, as listed in table 5.12. These terms differ from the corresponding terms in the lunar
magnetic tide L(2s —24) by the presence of the Pj;_, terms, an amplification factor of only 1.3
with respect to sunspot number for the larger terms P} and P}, and the retardation of phase
with increasing sunspot number. The corresponding terms in L(2s— 2%) show a greater ampli-
fication and a phase angle advance with increasing sunspot number.

The occurrence of equator-symmetric local time terms in pairs P}, and P}, in the solar
magnetic tide, points strongly to a dynamo origin with atmospheric wind velocity potential
of the form cos #* P} and cos 2¢* P3, or in terms of modes (1, —1) and (2, 3). The (2, 3) mode
has been considered by Schieldge ¢t al. (1973). The response of the terms to increase in sunspot
number is summarized in table 5.13. The constancy of the P} term indicates that the responsible
dominant mode of the semi-diurnal wind system remains invariant throughout the sunspot
cycle. It also follows that the cos? y term in any model for ionospheric conductivity in the
region in which this term is produced, remains constant.
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The equator-symmetric local time terms in § are responsible for the difference in magnitude
and skewing of the equivalent overhead current foci, shown in figure 8.10. Because the equator-
symmetric terms depend upon local time t*, they cannot arise through the interaction of the
principal local time terms with fixed geographic features such as the oceans, or the topographic
features of the land distribution such as mountain ranges.

The day-to-day variability of Sy (the solar magnetic tide § observed on magnetically quiet
days) has been associated with changes in position of the overhead current foci (Hasegawa
1960; Matsushita 1960), and also with the skewing of the current system foci (Brown & Williams
1969; Brown 1975). Hasegawa (1960) indicated that, with regard to the day-to-day changes
of the Sy field, the presence of the symmetrical terms P}, P}, P} in the magnetic tidal potential
was ‘conspicuous’, and that the corresponding wind system was a wind circulation across the
equator. The wind system considered here, with potentials of the form P}, P consists of a
movement southward across the equator during the morning, northward in the afternoon,
with easterly motion in northern mid-latitudes and westerly motion in southern mid-latitudes
during daylight. In terms of modes, the diurnal modes are (1, —1), (1, —3), and the semi-
diurnal modes are (2, 3) and (2, 5).

The combination of two dominant local time equator-symmetric terms

1019 cos (#* + 81°) P} + 1102 cos (2t* 4 268°) P2

has extrema occurring at local times t* = 130°, 240°, corresponding to 09 h 00 and 16 h 00
respectively. At these times the foci of the equivalent overhead current system for the two
terms will cross the observatory’s meridian. If day-to-day variability of S is associated with
the equator-symmetric local time terms, then day-to-day variability can be expected to be
greatest at these times.

The solar magnetic tide also contains a substantial, zonal, diurnal U.T.-dependent term
979 cos (¢4 106°) P§ during I1.Q .S.Y. years and 3443 cos (¢+ 85°) P§ during 1.G.Y. years. The
threefold increase of amplitude with sunspot number is greater than the twofold increase
already noted for the principal local time terms. The 1964—65 term is greatest at U.T. ¢ = 254°
(17 h), when the Sun is 74 °W of Greenwich, virtually on the meridian containing the Earth’s
geomagnetic dipole axis. The zonal form and the U.T. dependence indicate that the origin
of the term is in the modulation of current systems associated with magnetic disturbance due
to the non-alignment of the geographic and geomagnetic axes, i.e. the zonal U.T. term occur-
ring in the solar magnetic tide does not derive from the ionospheric dynamo mechanism that
gives the principal local time terms. Zonal, diurnal, U.T.-dependent terms in § are listed in
table 5.14.

TaBLE 5.14. DrurnaL, zoNAL, U.T.-DEPENDENT TERMS IN §

1964-65 1957-60
1405 cos (¢4 12°) P 1904 cos (¢+288°) P¢
979 cos (¢t+ 106°) P 3443 cos (¢+ 85°) P

— 2154 cos (¢+277°) P}

The solar magnetic tide also includes very significant non-local time terms which are west-
ward moving and symmetric about the equator. The terms are given in table 5.15. One group
is sectorial and a smaller group is of the form P}, ,; both groups are symmetric about the
equator. The amplitudes, apart from the P} term, show a marked increase with sunspot number,
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whereas the corresponding non-local time terms in L(2s— 24) show, if anything, a'slight de-
crease (see table 5.6). The amplitudes of the sectorial non-local time terms in the solar magnetic
tide are only about one tenth of the principal local time terms P, and hence do not distort
the equivalent overhead current systems. From tables 5.1 and 5.6, the corresponding sectorial
non-local time terms in the lunar magnetic tide are almost equal to the principal local time
terms and hence the equivalent overhead current system is distorted considerably. The phase
angles of both the solar and lunar non-local time terms are retarded with increasing sunspot
number.

TABLE 5.15. WESTWARD-MOVING, EQUATOR-SYMMETRIC, NON-LOCAL TIME TERMS IN §

1964-65 1957-60
of the form P? 784 cos (2¢+t+95°) P3 2939 cos (2¢ + ¢+ 65°) P2
397 cos (3¢ + 2t+288°) P} 1050 cos (3¢ + 2¢+ 238°) P}
209 cos (44 + 314 125°) P} 166 cos (4¢ + 3¢+ 45°) P}
1414 cos (¢ +2¢+99°) P} 2499 cos (¢ + 2t + 58°) P}
214 cos (2¢ + 3t+220°) P} 700 cos (2¢ + 3¢+ 196°) P2
— 182 cos (3¢ +4¢+ 12°) P3
of the form P7,, 394 cos (¢ + 2t + 249°) P} 999 cos (¢ + 2¢t+ 301°) P}
120 cos (2¢ + 3¢+ 81°) P} 326 cos (2¢ + 3¢+ 43°) P2

TABLE 5.16. NON-LOCAL TIME TERMS IN § AT LOCAL NOON

1964-65 1957-60
of the form P 784 cos (—t+95°) P32 2939 cos (—t+ 65°) P}
397 cos (—t+ 108°) P3 1050 cos (—t+ 58°) P3
209 cos (— ¢+ 125°) P3 166 cos (— ¢+ 45°) P
1414 cos (t+279°) P} 2499 cos (¢+238°) Pt
214 cos (t+220°) P2 700 cos (t+ 196°) P2
not significant 182 cos (t+ 192°) P3

In terms of local time ¢*, the time dependence of the non-local time terms can be written as
n*—t n=234, and m*+i4 n=1,2 3,

indicating a U.T. modulation of a local time solar magnetic tide. The solar non-local time
terms have similar phase angles at local noon, /* = 180°, as shown in table 5.1. The two groups
of terms indicated in table 5.16 come into phase at about U.T. ¢ = 90° and 270°, i.e. at about
the same U.T. as the corresponding L(2s—2k) terms. The different amplitudes of the solar
and lunar non-local time terms relative to the corresponding local time terms indicate different
causes and exclude, for example, the direct influence of the high electrical conductivity of the
oceans on the induced current systems (see, for example, Rikitake 1961, Roden 1964). The
solar non-local time terms may be associated with the variation in atmospheric water vapour
in the upper atmosphere over land and ocean areas, and the combination of P} and P} non-
local time terms suggests a U.T. modulation of the dynamo mechanism associated with a
combination of (1, 1) and (1, —2) modes of wind velocity. The lunar non-local time terms
may be associated with a U.T.-dependent variation in the transmissivity of the mesosphere
to the lunar atmospheric tide.

The dominantly sectorial nature of the non-local time terms in both the solar and lunar
magnetic tides indicates the great value of the separation of groups of observatories into longi-
tudinal sectors (see, for example, Matsushita & Maeda 19654, b).
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Annual variation of the lunar magnetic tide

The lunar magnetic tides L(2s—3%) and L(2s—#) represent the seasonal variation of the
principal lunar magnetic tide L(2s— 2h) that proceeds at the rate of 1 c¢/y. The numerical
results are given in tables 8.3 and 8.5, and the equivalent overhead current system contours
are given in figures 8.3 and 8.5. The contours show the strongly sectorial nature of the phase-
law tides for both L(2s—3hk) and L(2s— k), with current foci for L(2s—34) being greater than
those for L(2s —#). Comparison of figures 8.1 and 8.3, shows that the current foci for L(2s— 34)
are almost equal to those for the principal lunar magnetic tide L(2s— 2k). The partial tides
for both L(2s—3h) and L(2s—#4) are much smaller than the corresponding phase-law tides,
with the equivalent overhead current system of the L(2s—#) partial tide showing very pro-
nounced U.T. dependence.

TABLE 5.17. PRINCIPAL LOCAL TIME PHASE-LAW TERMS FOR L(2s—3h) AND L(25—h);
SEASONAL CHANGE OF THE LUNAR MAGNETIC TIDE L(2s— 2h)

terms of the form P?

L(25—3h)

218 cos (t* — 25+ 3h+ 317°) P}
268 cos (2t* — 25+ 3h+ 148°) P2
122 cos (3t* — 25+ 3h+ 334°) P3

L(2s—h)

212 cos (t* ~ 25+ h+ 226°) P}
151 cos (2¢* — 25+ h+ 26°) P2
78 cos (3t* —2s+ h+226°) P}

11 cos (4% — 25+ 3h+ 148°) P4 —

62 cos (t* —2s+ 3h+85°) P} 43 cos (t* — 25+ h+250°) P}
67 cos (2¢* — 25+ 3h+ 162°) P2 54 cos (2t* — 25+ h+ 30°) P}
41 cos (3t* — 25+ 3h+ 333°) P? 26 cos (3t* — 25+ h+ 205°) P?
10 cos (4¢* — 25+ 3h+ 190°) P} 9 cos (4t* — 25+ h+19°) P}

terms of the form P? .,

Results for L(2s—3h) and L(2s—#h) for the I.G.Y. years are not available, and hence the
results required in the following discussion are collected together, as in table 5.17. The principal
local time terms in both L(2s—3hk) and L(2s—#) are sectorial, of the form P}, and they are
accompanied by terms of the form P2,,. Both terms Py and P}, are symmetric about the
equator. The pairs of terms P}, and P}, 4 occurring in the principal solar and lunar magnetic
tides are derived from pairs of terms P3 and P3% in the wind velocity potential associated with
the Hough-function modal structure of upper atmosphere winds. However, the same pairs of
terms P, and P}, occurring in the seasonal change L(2s—34) and L(2s— k) of the principal
lunar magnetic tide derive from just one term P% in the tidal potential and therefore cannot
be used to evaluate combinations of modes for the upper atmosphere wind systems.

For L(2s—#) the terms P}, P}, could both derive from an ionospheric dynamo involving
the wind velocity potential P} associated with the diurnal atmospheric tide O;. It is not possible
to separate the lunar dynamo effect of the atmospheric tide O, from the seasonal variation of
the principal lunar magnetic tide L(2s— 24).

With 25— 24 denoted by 2, the principal diurnal local time terms in L(2s — 3%) and L(2s— &)
can be added to give

218 cos (#* —2v +h+317°) P14 212 cos (t* — 2v —h+226°) P}
= 6 cos (t* —2v+2°) Pf, when £ = 45° about 8 May,
430 cos (t* —2v+92°) P}, when & = 135° about 7 August,
= 6 cos (t* —2v +182°) P§, when £ = 225° about 6 November,
430 cos (t* — 2y +272°) P}, when & = 315° about 6 February.
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Comparison with the diurnal term in L(2s—2h), namely 174 cos (¢* —2v + 86°) P}, shows the
considerable variation of the diurnal term for L(2s—2A) if evaluated for specific seasons. If
the amplitude only is considered of the combination of the diurnal local time term in L(2s — 24)
and the four seasonal contributions listed, then the annual variation might be incorrectly
interpreted as a semi-annual variation with maxima in early August and early February.
Stening & Winch (1979) and Campbell (1980) have ‘rectified’ the annual variation by just
this means, and described it as semi-annual. If the phase angle of the combination of terms
is not included, either explicitly or in a vectorgram, then the relatively small semi-annual
variation in the lunar magnetic tides may be grossly overestimated.
With 25— 2/ still denoted by 2, the principal semi-diurnal local time terms have the form

268 cos (2¢* —2v +h+ 148°) P2+ 151 cos (2t* — 2v —h + 26°) P}

117 cos (2t* —2v+177°) P, when h = 29°, about 22 April.
419 cos (2t* — 2y +267°) P, when & = 119°, about 21 July,
117 cos (2t* —2v +357°) P3, when 4 = 209°, about 21 October,
= 419 cos (2t* —2v+87°) P3, when & = 299° about 20 January.

These terms are to be compared with the semi-diurnal term in L(2s—2k), given by 254 x
cos (2¢* —2v 4+ 261°) P, showing that the variation with season of this semi-diurnal term is
quite large.

Sectorial terms P} in the magnetic potential give no variation in the X component of the
magnetic field at the equator, while tesseral terms P}, give no variation in the Y and Z
components of the magnetic field at the equator. Consequently, at equatorial observatories,
variations in the X component are associated with the tesseral terms Pj,; in L(2s— 24) and
will show little or no seasonal variation, while lunar variations in the ¥ and Z components
are associated with the sectorial terms Pj; in L(2s—3k) and L(2s—#h), and as such will have
an almost zero annual average.

It has been shown that combinations of diurnal and semi-diurnal terms from L(2s—3%),

" L(25—2h) and L(25s—#) lead to large lunar magnetic tides in northern summer in late July
and early August. Such magnetic tides are larger than might be expected to arise purely from
seasonal variations in ionospheric conductivity which would tend to give northern summer
extrema in late June. A possible mechanism appears to be seasonal variation in the trans-
missivity of the mesosphere to the lunar atmospheric tide, proposed by Geller (1970).

The seasonal variation of the solar and lunar magnetic tides is traditionally discussed in
terms of solstitial or equinoctial semi-differences, e.g. results based on the summer-winter
semi-difference or spring—autumn semi-difference, for Northern-Hemisphere seasons. By using
the following values for 4 in relation to season,

h = 0° northern spring, % = 90°, northern summer,
h = 180°, northern autumn, 4 = 270°, northern winter,

itis possible to derive the appropriate semi-differences. The local time coefficients of Pt and P2in
L(2s—3h) and L(2s— k) give the following expression for the spring—autumn semi-difference:

301 cos (t* — 25+ 2h+272°) P} + 371 cos (2¢* — 25+ 2k + 78°) PE;
and for the summer-winter semi-difference:
307 cos (£* — 25+ 2h+ 91°) P14 400 cos (2£* — 25 + 2h + 259°) P3.
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The result given by Chapman (1919) for the summer-winter semi-difference is
419 cos (t* — 254 2h+ 72°) P14+ 512 cos (2t* — 25 + 2h+ 257°) P2,

so that the different descriptions are seen to be in good agreement.

Another group of local time terms, antisymmetric about the equator, appears in both the
phase-law and partial tides of L(2s—3h) and L(2s—#h). Significant terms of the form Pj,, and
P75 occur, but only those of the form P, are given in table 5.18. The dominant term in this
particular group is a partial tide, 101 cos (#* +2s—h+ 298°) P}. The presence of significant
partial tides indicates that this group of terms is not associated with seasonal or annual changes
of the lunar magnetic tide L(2s— 24), but rather with long-period variations in ionospheric
conductivity corresponding roughly to the second ‘harmonic’ of the 27-day sunspot recurrence
tendency. If the long-period variation in ionospheric conductivity has P§ or cos 6 dependence,

TABLE 5.18. EQUATOR-ANTISYMMETRIC LOCAL TIME TERMS IN L(25s —3A) AND L(2s —A)

L(25s— 3k) L(2s—k)
terms of the form P?,,

phase-law — 41 cos (¢* —2s+h+319°) P}
35 cos (2t* — 25+ 3h+29°) P2 73 cos (2t* — 25+ h+218°) P2

16 cos (3t* — 25+ 3k +238°) P3 61 cos (3t* — 25+ h+45°) P3
— 32 cos (4t* — 25+ h+ 224°) P}

partial 44 cos (t* 4+ 25— 3k +230°) P} 101 cos (¢*+ 25—k +298°) P}
42 cos (2t* +2s—3h+ 177°) P2 28 cos (2t* +2s—h +263°) P}

15 cos (3t* +25—3h+37°) P2 22 cos (3t*+ 25— h+33°) P2
8 cos (47* + 25— 3h+ 282°) P4 14 cos (4t* + 25— h+ 219°) P}

TABLE 5.19. ZONAL PHASE-LAW AND PARTIAL TIDES IN L(2s—34), L(2s—h)

L(25—3h) L(25—k)
phase-law 216 cos (¢—2s+ 3h+ 153°) PS 162 cos (t—2s+h+92°) P$
132 cos (t—2s+ 3k+209°) P} —
41 cos (¢—2s+ 3k +340°) P 50 cos (¢—2s+h+298°) P§
partial — 112 cos (t+ 25— h+ 18°) P}
47 cos (t+ 25— 3h+207°) P§ 55 cos (t+2s5—hk+307°) P

then the equator-antisymmetric group of terms could be generated by interaction with the
electric fields that produce the equator-symmetric local time terms P} in the solar magnetic
tide when the ionospheric conductivity is constant. From equation (6) the periods associated
with 25— 3k and 25—#% are 15.4 and 14.2 days, respectively, which places them on the longer-
period side of the 13.5-day period forming the second ‘harmonic’ of the 27-day sunspot re-
currence tendency. Similar equator-antisymmetric local time terms, P}, and P} _,, occur in
the seasonal change of the elliptic magnetic tide, with amplitudes about the same as the
corresponding terms in L(2s—3#) and L(2s —#). This adds support to the theory and indicates
" that the source is not the seasonal variation of ionospheric conductivity.

The lunar magnetic tides L(2s—34) and L(2s—#) contain zonal, U.T.-dependent phase-
law and partial tides, listed in table 5.19. The amplitudes of these terms are roughly half the
amplitudes of the principal local time terms of L(2s— 2#) in table 5.1, and about equal to the
amplitudes of the zonal U.T.'-dependent terms of L(2s—2hk) in table 5.4. The zonal U.T.-
dependence of such terms indicates an origin in the daily variation of a zonal overhead current
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system associated with magnetic disturbance brought about by the diurnal motion of the geo-
magnetic axis about the geographic axis. The parameters 2s — 3k and 25—/ indicates a further
modulation near the second ‘harmonic’ of the 27-day recurrence tendency, with periods of
15.4 and 14.2 days.

Sectorial, westward-moving non-local time terms in L(2s—3k) and L(2s—#) are given in
table 5.20. At local noon when t* = 180° each group is seen to have about the same phase
angle. The L(2s—3hk) group and the L(2s—#h) group come into phase at # = 116° and 296°
corresponding to about 20 July and 18 January respectively. At & = 116° the combination

becomes
314 cos (¢ + 2t —2v+171°) P14 134 cos (¢ + 2t —2v + 172°) PE,

to be compared with the principal local time terms written as
174 cos (2¢ + 2t —2v + 86°) P} + 254 cos (2¢ + 2¢— 2v + 261°) P3.

Clearly, the principal lunar magnetic tide L(2s— 2k) will be greatly modified by the presence
of the sectorial, westward-moving, non-local time terms in L(2s—3k) and L(2s—#). In the
absence of corresponding terms for the I.G.Y. years, no definite conclusion can be drawn as
to the origin of these terms, but a U.T.-variation of the transmissivity of the mesosphere to
the lunar atmospheric tide over ocean areas could be considered.

TABLE 5.20. SECTORIAL, WESTWARD-MOVING, NON-LOCAL TIME
PHASE-LAW TIDES IN L(2s—3h) and L(2s—#)

L(25—3k) L(25—h)

203 cos (@ + 2¢t— 25+ 3k + 235°) P} 111 cos (@ + 2¢t— 25+ k+ 106°) P}
77 cos (2¢ + 3¢t — 25+ 3h+ 56°) P2 57 cos (2¢+ 3t—2s+h+277°) P}
17 cos (3¢ + 4t — 25+ 3k + 266°) P3 25 cos (3¢ + 4t — 25+ h+ 109°) P}

terms evaluated at local noon ¢* = ¢t+¢ = 180°

203 cos (t—2v+k+ 55°) P} 111 cos (t—2v—h+286°) P}
77 cos (t—2v+k+56°) P2 57 cos (t—2v—h+277°) P3
17 cos (t—2v+h+86°) P3 25 cos (¢—2v—h+239°) P2

TABLE 5.21. SECTORIAL, LOCAL TIME PARTIAL TIDES IN L(2s—3A) AND L(25s—A)

L(25—3k) L(2s—h)
—_ 144 cos (¢t* +2s—h+ 191°) P}
37 cos (2t* + 25— 3h+ 80°) P} 42 cos (2t* + 25— h+97°) P}

24 cos (3t* + 25— 3+ 262°) P3 —
11 cos (4t* + 25— 3k + 152°) P4 —

Apart from the partial tides given in tables 5.18, 5.19, both L(2s—34) and L(2s —#£) contain
a group of sectorial, local-time partial tides, and these are listed in table 5.21. The amplitudes
of these terms are much smaller than the corresponding phase-law terms given in table 5.17
(being the principal terms in both L(2s—3hk) and L(2s—4)).

Semi-annual variation of the lunar magnetic tide

The semi-annual variation of the principal lunar magnetic tide L(2s— 2k) is given by two
magnetic tides L(2s —4h) and L(2s). The numerical results are given in tables 8.2, 8.6, and
the equivalent overhead current function contours in figures 8.2, 8.6. The contours show that
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the phase-law tides are greater during daylight, with phase-law tides for L(2s) being greater
than those of L(2s — 4k). Contours for L(2s— 4h) phase-law tides show an interesting transition
from sectorial to zonal form at different values of 25— 4A. Partial tides for both L(2s—4h)
and L(2s) have smaller current foci than the corresponding phase-law tides.

The dominant terms in L(2s — 44) and L(2s) are not local time terms, but the zonal, diurnal,
U.T.-dependent terms listed in table 5.22. The external potential 7P} = r cos § = z corre-
sponds to the potential of a uniform magnetic field parallel to the z-axis. The equivalent current
system is either a ring current in the Earth’s equatorial plane flowing well above the ionosphere,
or a P} equivalent overhead current system flowing at a level either in or above the ionosphere.

TABLE 5.22. ZoNAL, DIURNAL, U.T.-DEPENDENT TERMS IN PHASE-LAW AND
PARTIAL TIDES OF L(2s—4h) AND L(2s)

L(2s—4h) L(2s)
phase-law 309 cos (t— 25+ 4h+285°) P9 86 cos (t— 25+ 149°) P§
partial 67 cos (t+25—4h+117°)PY 113 cos (¢4 25+ 166°) P?

TABLE 5.23. LOCAL TIME PHASE-LAW AND PARTIAL TIDES IN L(2s—4k) AND L(2s)

L(25— 4k) L(2s)
equator-symmetric sectorial terms, P?
phase-law 42 cos (t* — 25+ 4h + 224°) P} 127 cos (t* — 25+ 62°) P}
59 cos (2t* — 25+ 4h+ 165°) P2 136 cos (2t* — 25+ 259°) P2
31 cos (3t* —25+4h+ 17°) P3 88 cos (3t* — 254 87°) P}
7 cos (4t* —2s+4h+194°) P} 22 cos (4t* — 254 295°) P}
partial 84 cos (t* + 25— 4k + 190°) P} 140 cos (t* + 25+ 333°) P}
27 cos (2t* + 25— 4h+ 325°) P2 71 cos (2t% 4 25+ 249°) P2
13 cos (3t* + 25— 4h+ 131°) P2 42 cos (3t* 4 25+ 85°) P3
8 cos (4t* + 25— 4h+251°) P} 8 cos (4¢* + 25+ 312°) P}

equator-antisymmetric tesseral terms P2,

phase-law 55 cos (t* —2s+4h+ 260°) P} 87 cos (t* — 25+ 32°) P}
23 cos (2t* — 25+ 4k + 60°) P2 34 cos (2¢* — 25+ 238°) P2
— 31 cos (3t* — 25+ 78°) P}
9 cos (4t* — 25s+4h+233°) P4 16 cos (4t* — 25+ 261°) P}
partial 86 cos (1* +25—4h+ 178°) P} 121 cos (t* + 25+ 286°) P}
33 cos (2t* 4 25— 4h+ 162°) P2 14 cos (2t* 4 25+ 326°) P}

— 12 cos (3t* + 25+ 63°) P3

Both systems are associated with magnetic disturbance, and the diurnal U.T.-variation of the
terms of table 5.22 indicates a possible origin in the modulation of such steady current systems
by the movement of the geomagnetic axis about the geographic axis. The presence of phase-
law and partial tides with parameters 25 — 44 and 2s indicates further long-period modulation
at 16.1 and 13.7 days, associated with the second ‘harmonic’ of the 27-day recurrence tendency
in sunspot number and magnetic activity.

The magnetic tides dealt with so far have included local time terms of the form P and P7,,,
with one group being considerably greater than the other. In the magnetic tides L(2s — 44) and
L(2s), both groups are present, but with approximately the same amplitudes. The largest
terms in each group are the partial tides, P{ in the P}, group and P} in the P, group.
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From equation (6) the periods associated with 25— 4/ and 25 are 16.0641 and 13.6608 days,
respectively. If the long-period modulation of ionospheric conductivity at about the second
‘harmonic’ of the 27-day recurrence tendency is equator-antisymmetric, for example P{ in
form, then it is suggested that the P}, local time terms in L(2s—44) and L(2s) arise through the
interaction of the long-period modulation of ionospheric conductivity with the electric fields that
produce the principal local time terms P, in the solar magnetic tide when the ionospheric
conductivity is constant. The P} phase-law and partial tides given in table 5.23 are comparable
in magnitude with the P} phase-law and partial tides in L(2s—2#4) given in table 5.5.

The semi-annual variation in ionospheric conductivity is associated with the cos? y term,
and is therefore symmetric about the equator. It is suggested that the P}, local time terms
in L(2s—4#k) and L(2s) in table 5.23 arise through interaction of the semi-annual variation in
ionospheric conductivity with the electric fields that produce the principal local time terms
P, in the lunar magnetic tide L(2s— 24) when the ionospheric conductivity is constant.

It will now be shown that at certain lunar phases at three-monthly intervals, the contri-
butions from the diurnal local time phase-law and partial tide terms in L(2s—44) and L(2s)
will dominate the diurnal local time term in the principal lunar magnetic tide L(2s— 24).

The diurnal, local time, phase-law Pj terms in L(2s —44) and L(2s), with 2v = 25— 2h, are

42 cos (t* — 2v + 2h+ 224°) P} + 127 cos (#* — 2v— 2k + 62°) P}
= 169 cos (¢* —2v+324°) P} when £ = 50° 230°,
= 169 cos (t* —2v+144°) P} when £/ = 140°, 320°.
The corresponding partial tides in L(2s—44) and L(2s) are
84 cos (#* + 2v — 2k + 190°) P+ 140 cos (¢* + 2v + 2h+ 333°) P
= 224 cos (t*+2v+72°) P} when £k = 54°, 234°.
= 224 cos (¢*+2v+252°) P1 when £/ = 144°, 324°,
and it is of interest that the epochs at which the partial tides come into phase are almost
identical with the epochs for the corresponding phase-law tides. When £ = 144° or 324°,
about 15 August or 15 February respectively, the phase-law and partial tide diurnal terms
come into phase at certain lunar ages:
169 cos (¢* — 2v + 144°) P14 224 cos (t* + 2v + 252°) P}
= 393 cos (¢*+18°)P1 when v = 63° 243°
393 cos (t* +198°) P1 when v = 153°, 333°.

Similar expressions, differing in phase by 180° are obtained when % = 54° or 234°, about 15
May and 15 November.
The diurnal, local time, phase-law Py, terms in L(2s—4k) and L(2s) are

55 cos (t* — 2v+ 2h+ 260°) P+ 87 cos (#* — 2v — 2k + 32°) P}
= 142 cos (t* —2v+326°) P} when 4 = 33° 213°,
142 cos (t* —2v+146°) P} when A = 123°, 303°,

which can be compared with the principal diurnal term in L(2s— 2#/), namely

174 cos (¢* —2v+ 86°) P},
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The diurnal, local time, partial tide Py, terms in L(2s—4h) and L(2s) are
86 cos (t* + 2v — 2h+ 178°) P} + 121 cos (¢* + 2v + 2k + 286°) P}
= 207 cos (t*+2v+52°)P} when h = 63°, 243°,
= 207 cos (t*+2v+232°) P} when & = 153°, 333°,
and the partial tides come into phase some 30°, i.e. about one month, after the phase-law tides.
At an intermediate value of 4, then, i.e. when & = 138° or 318°, corresponding to about 9
August or 9 February, respectively, the phase-law and partial tides have the form
124 cos (¢* —2v +138°) P1+ 180 cos (t* + 2v + 226°) P}
304 cos (t* +2°) P} when v = 68°, 248°,
304 cos (t* +182°) Py when v = 158°, 338°.

At v = 68° or 248° the principal local time diurnal term in L(2s—2k) becomes 174 x
cos (t* +320°) P}, with phase only 40° behind that of the L(2s—4#4) and L(2s) combination
just given. The influence of L(2s—4h) and L(2s) is therefore shown to be significant at certain
combinations of season and lunar phase.

TABLE 5.24. WESTWARD-MOVING, SECTORIAL NON-LOCAL TIME TERMS
IN L(2s—4h) aND L(2s)

L(2s—4h) L(2s)
phase-law 65 cos (2¢ +t— 25+ 4+ 134°) P2 51 cos (2¢ +t— 25+ 213°) P2
65 cos (3¢ +2t— 25+ 4k + 329°) P3 63 cos (3¢ + 2t — 25+ 21°) P}
38 cos (4¢ + 3t— 25+ 4+ 178°) P4 33 cos (49 +3t— 25+ 175°) P}
partial 112 cos (¢ + 2+ 25— 4h+ 87°) P} 83 cos (¢ + 2+ 25+ 299°) P}

The magnetic tides L(2s—4h) and L(2s) also include a group of non-local time, westward-
moving, sectorial terms, listed in table 5.24. It is of interest that this same type of term has
appeared in all magnetic tides examined so far, e.g. L(2s—2h), S, L(2s —3hk), L(2s —4h), L(2s).
It is also of interest that they all have the property that they come into phase at local noon
t* = t+¢ = 180°

Seasonal change of the solar magnetic tide

The seasonal change of the solar magnetic tide S is denoted by S (%), and the results presented
here in table 8.11 have been obtained by using the same computer program as used for the
various lunar magnetic tides, with lunar parameters replaced by 4. The nomenclature ‘phase-
law’ and ‘partial’ tide, as applied to the lunar magnetic tides, is not appropriate for the
seasonal change of the solar magnetic tide, and hence terms with arguments k¢ +nt+h+o
have been denoted S*(h), those with arguments k¢ + nt — 4+ o denoted S—(%). The dominant
terms in $—(k), $*(k), are equator-symmetric local time terms, being either sectorial P? or of
the form P7_,; they are listed in table 5.25.

According to Chapman’s (1919) dynamo theory, the local time terms P, Py, in the seasonal
variation of the solar magnetic tide arise through the seasonal modulation of ionospheric
conductivity, as indicated by the cos y term, interacting with the P and P2 wind velocity
potentials, or equivalently with the (1, —2) and (2, 2) wind velocity modes. The inequalities
in the amplitudes of the corresponding S—(#) and $+(%) terms can be attributed to the dynamo
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effect of the atmospheric tides K; and P; with potentials sin (¢* +4) P} and sin (¢* —h) P}
respectively.
The principal diurnal local time terms in the seasonal variation of § have the form
2535 cos (t* —h+ 117°) P1+ 2894 cos (t* +h+ 276°) P}

= 359 cos (t*+286°) P1 when /4 = 10° about 2 April,

= 5429 cos (t*+16°) P{  when £ = 100° about 2 July,

= 359 cos (t*+106°) P} when £ = 190° about 2 October,

= 5429 cos (#*+196°) P{ when £ = 280° about 1 January.
Comparison of these expressions with the yearly average solar diurnal magnetic tide given by
6146 cos (t* +19°) P} shows that the greatest amplitudes for the diurnal component of the
solar magnetic tide in Northern-Hemisphere observatories will occur when 2 = 100°, on about

2 July. Greatest amplitudes for the corresponding lunar magnetic tidal terms occur about a
month later when 4 = 135° on 7 August.

TABLE 5.25. LOCAL TIME TERMS IN THE SEASONAL CHANGE OF THE SOLAR MAGNETIC TIDE

S=(h) S*(h)
sectorial terms P? 2535 cos (t* —k+117°) P} 2894 cos (t* +k+276°) P}
923 cos (2t* —h+ 11°) P2 1325 cos (2% +h-+ 147°) P2
543 cos (3t* —k+ 224°) P3 711 cos (3t* + h+ 354°) P3
248 cos (4t* —h+95°) P} 206 cos (4t* +h+214°) P}
equator-symmetric terms P? ., 907 cos (t* —k+74°) P} 585 cos (t* +h+260°) P}
383 cos (2t* —h+269°)P?2 309 cos (2t*+k+ 107°) P2

It should be noted that if the amplitude and phase angle of the solar diurnal magnetic tide
are determined at any observatory for different seasons, consideration of the amplitude only
would be equivalent to rectification of the seasonal change, which might then be incorrectly
interpreted as a semi-annual variation.

The principal semi-diurnal local time terms in S—(%), $*(%) have the form

923 cos (2¢* —h+11°) P3+1325 cos (2t* +h+ 147°) P}
= 402 cos (2t*+169°) P} when #& = 22° about 15 April,
= 2248 cos (2t* +259°) P3 when /4 = 112° about 15 July,
= 402 cos (2t* +349°) P} when £ = 202° about 15 October,
= 2248 cos (2t* +79°) P3 when A& = 292° about 15 January.

These terms are to be compared with the yearly average solar semi-diurnal term 2922 x
cos (2¢* +197°) P} In contrast to the corresponding lunar magnetic tides, the solar yearly
average diurnal term is greater than the seasonal terms.

Largest values for seasonal contributions of the solar daily variation diurnal and semi-
diurnal terms occur at 2 = 100°, 112°, respectively, corresponding to 2 and 15 July. Seasonal
contributions to the lunar magnetic tides by diurnal and semi-diurnal terms have maxima at
h = 135°, 119° respectively, corresponding to 7 August and 21 July. The later dates for the
lunar variation extrema indicate a dependence upon atmospheric temperature rather than
directly upon solar zenith angle y.
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Chapman (1919) and Chapman et al. (1971) drew attention to the fact that the relative
seasonal change in the lunar magnetic tide is approximately three times the relative seasonal
change in the solar magnetic tide. The same result can be seen in the present work. By con-

sidering the diurnal terms only, the seasonal change of the solar magnetic tide is

6146 cos (¢* +19°) P}+{2535 cos (t* —h+117°) + 2894 cos (t* +h+276°)} P},

and of the lunar magnetic tide

174 cos (#* — 2v + 86°) P} +{218 cos (#* —2v+h+317°) + 212 cos (#* — 2v —h+226°)} P}

TABLE 5.26. EQUATOR-ANTISYMMETRIC LOCAL TIME TERMS IN THE SEASONAL CHANGE OF §

terms of the form P2,

terms of the form P74

S (h)
274 cos (t* — h+267°) P}

82 cos (3t* — h+ 338°)P3
110 cos (4¢* —h+ 174°) P}

103 cos (t* — h+298°) P}
77 cos (2t* — h+ 300°) P2
68 cos (3t* — b+ 102°)P3

St(h)

328 cos (t* +h+25°) P}
113 cos (2t* + k4 150°) P3
41 cos (3t* + h+55°) P}
91 cos (4¢*+k+311°) P4

124 cos (¢* +k+127°) P}
66 cos (2t* +h+150°) P2
41 cos (3t* +h+254°) P}

These diurnal expressions confirm that the seasonal variation of the lunar magnetic tide is
greater than that of the solar magnetic tide. The semi-diurnal terms also give the same result.
It follows, therefore, that the wind systems producing the solar and lunar magnetic tides do
not have the same ratio to one another at all heights at all times throughout the year. This
serves to emphasize the different origins, thermal and gravitational, respectively, of the wind
systems producing the solar and lunar magnetic tides. The variation with season of the lunar
magnetic tide is so great that the equator-symmetric seasonal terms in the winter hemisphere
overwhelm the equator-antisymmetric annual average terms. This has been interpreted as a
failure of the lunar tidal dynamo in the winter hemisphere (see, for example, Stening &
Winch 1979).

The seasonal change of the solar magnetic tide includes equator-antisymmetric local time
terms of the form P}, and P}, listed in table 5.27. It is very likely that these terms arise
through the seasonal change of ionospheric conductivity, antisymmetric about the equator,
interacting with electric fields produced by wind velocity modes giving the sectorial terms P,
in the solar magnetic tide when the ionospheric conductivity is constant. That the P} (diurnal)
terms come into phase when £ = 121°, 301°, about 24 July and 22 January respectively,
supports the association with the seasonal change of ionospheric conductivity.

Non-local time sectorial terms occur only in the St(4) group, and are associated with the
dynamo action of the atmospheric tide K;. The terms are as follows:

294 cos (2¢ +t+h+147°) P+ 214 cos (3¢ + 2t +h+ 161°) P3
+ 163 cos (4¢ + 3t +h+161°) P31+ 67 cos (5 + 4t +h+ 352°) P3.
As with other terms of this type, they come into phase at local noon, ¢ +¢ = 180°. Associated

with this group of non-local time sectorial terms in S*(%) are zonal, diurnal, U.T.-dependent

terms:
314 cos (t+h+153°) Py + 222 cos (t+h+257°) P3.
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Similar zonal terms occur in S—(%):
278 cos (¢ —h+224°) P+ 328 cos (t—h+16°) PY.

It is unlikely that the $—(4) zonal terms with their apparent dependence upon sidereal time,
¢ — hin the present notation, derive from the rotation of the Earth in an interplanetary magnetic
field.
Semi-annual variation of the solar magnetic tide

The semi-annual variation of the solar magnetic tide is given by §(24). Terms corresponding
to phase-law and partial tides are denoted S~(24) and S*(2%) respectively. Results are given
in table 8.12, and the equivalent overhead current system in figure 8.12. It will be seen from
figure 8.12 that the intensities of the current foci are only about one tenth of those of the solar
magnetic tide, and from comparison with figure 8.1 are equal in intensity to those of the
principal lunar magnetic tide L(2s — 2k). Hence the semi-annual variation of the solar magnetic
tide is relatively small.

TABLE 5.27. EQUATOR-SYMMETRIC LOCAL TIME TERMS IN THE
SEMI-ANNUAL GHANGE OF THE SOLAR MAGNETIC TIDE

S-(2h) S*(2k)
sectorial terms P — 358 cos (1% + 2k +94°) P}
154 cos (2t* — 2k + 3°) P2 446 cos (2t* + 2k +296°) P}

38 cos (3t* — 2k + 195°)P3 192 cos (3t*+ 2k + 116°) P§
49 cos (4t* —2h+ 62°) P} 58 cos (4t* + 2k + 312°) P}

terms of the form P7_, 81 cos (t* — 2k +55°) P} 106 cos (t* + 2k+271°) P}
76 cos (2t* — 2k + 339°) P2 76 cos (2t* + 2k+ 302°) P2
47 cos (3t* —2k+117°) P} 68 cos (3t* + 2k + 64°) P3

In spite of its relative smallness, much has been written on the semi-annual variation of S.
Pogrebnoy (1969) considered seasonal variations in the neutral wind régime in the upper
atmosphere as the most likely source of the semi-annual variation in $q. Bhargava (19724, b, ¢)
considered the semi-annual variation of Sy to arise from two components, modulation of the
field by disturbance, and a small but significant component of ionospheric origin. Boller &
Stolov (1970) proposed that the semi-annual variation of magnetic activity was due to a
Kelvin-Helmholtz instability along the flanks of the magnetosphere. Sawyer (1974) considered
the semi-annual variation in the interplanetary field polarity pattern. Kolesnik (1976) argued
that semi-annual variations in the ionosphere and upper atmosphere were associated with
semi-annual variations of n(0)-concentration at the base of the thermosphere, which he showed
to be sufficient to produce corresponding variations in the ionized components. Wagner (1968 a)
considered the effect of increasing sunspot number on the semi-annual variation of .

The dominant local time terms are symmetric about the equator and of the form P} and
Pu.,. They are listed in table 5.27. The P} and Pj terms come into phase at £ = 17° and 20°,
respectively, indicating an origin in the semi-annual variation of ionospheric conductivity
associated with a semi-annual wave in magnetic activity, whose maximum value, according
to Chree (1912), occurs between 10 to 36 days after the vernal equinox, i.e. between £ = 10°
and & = 36°, approximately.

There is also a group of local time terms, antisymmetric about the equator, of the form
P%.,and P}, listed in table 5.28. As with the corresponding terms in the semi-annual variation

4 Vol. 303. A
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of the lunar magnetic tide, it is suggested that these equator-antisymmetric terms arise from
the equator-symmetric semi-annual variation in ionospheric conductivity associated with the
cos? y term interacting with the electric fields that produce the principal local time terms
P}, in the solar magnetic tide when the ionospheric conductivity is constant. The equator-
antisymmetric form P}, of these local time terms, and the comparability of their amplitudes
with those of the corresponding terms in the principal lunar magnetic tide L(2s— 2k) suggests
another possible dynamo mechanism. From the dependence on season A, such terms could
originate from wind velocities associated with the K, tide in the atmosphere, with potential
cos (2t* + 2h) P3.

TABLE 5.28. EQUATOR-ANTISYMMETRIC LOCAL TIME TERMS IN THE
SEMI-ANNUAL CHANGE OF THE SOLAR MAGNETIC TIDE

S-(2k) S*(2k)
terms of the form P?,, 164 cos (¢* —2h +45°) P} 2173 cos (£* + 2h+ 345°) P}
122 cos (2t* — 2h+ 155°) P2 363 cos (20* + 2k + 150°) P}
91 cos (3t* — 2k + 40°) P§ 190 cos (3t* + 2k +4°) P2
88 cos (41* — 2k 255°) P4 117 cos (4% + 2k +211°) P}
terms of the form P74 203 cos (¢* — 2k + 154°) P} 243 cos (t* + 2h+ 166°) P}
82 cos (2t* —2k+ 110°) P2 144 cos (2t* + 2k + 59°) P2

TABLE 5.29. SECTORIAL NON-LOCAL TIME TERMS IN S—(2h), S*(2h)

S-(2h) S*(2k)
— 100 cos (2¢ + ¢+ 2k + 197°) P2
72 cos (3¢ +2t— 2h+ 125°) P3 114 cos (3¢ + 2t + 2k + 34°) P}
42 cos (4¢ + 3t— 2k + 301°) P4 77 cos (4¢+ 3t+2h+210°) P}
59 cos (5¢ + 4t—2h+ 154°) P2 39 cos (5¢ +4t+2h+ 68°) P8

TABLE 5.30. ZoNAL, DIURNAL, U.T.-DEPENDENT TERMS IN S$—(2h), S*(2h)

S-(2k) S+(2k)

114 cos (¢ — 2k +225°) P9 208 cos (t+ 2k +354°) P§
81 cos (t—2h+ 52°) PJ 129 cos (t+2h+91°) PJ
113 cos (t—2h+231°) PY 147 cos (t+ 2k +208°) P?

There is also a group of sectorial non-local time terms, listed in table 5.29. As with other
terms of this type in other magnetic tides, the two groups of terms $-(24) and S*+(24) come
into phase at local noon. The P§ terms in $~(24) and $*(24) come into phase when A = 23°,
113°, 203°, and 293°, which indicates a connection with the semi-annual wave in magnetic
activity.

A group of zonal, diurnal U.T.-dependent terms is listed in table 5.30. By analogy with
corresponding terms in the semi-annual variation of the principal lunar magnetic tide, i.e. in
L(2s—4h) and L(2s), it is suggested that these terms arise through a diurnal modulation of
zonal current systems associated with the semi-annual variation in magnetic activity. The
diurnal modulation comes from the motion of the geomagnetic axis and the auroral zones
about the geographic axis.
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The lunar elliptic magnetic tide L(3s— 2k — p)

The semi-diurnal external phase-law terms for the lunar elliptic magnetic tide L(3s— 2k —p)
have been corrected for any contribution from the direct dynamo action of the ocean tide N,,
and the results given in table 8.1. The original semi-diurnal results, both phase-law and partial
tides, are given in table 8.8. Corresponding contours for equivalent overhead current functions
are given in figures 8.1, 8.8. The principal local time terms in the lunar elliptic magnetic
tide are antisymmetric about the equator, of the form Pj,, with accompanying terms P}, 5.
Results are not available for the I.G.Y. years, and because of the interest in comparing the
lunar and lunar elliptic magnetic tides, the external part of the principal local time terms
for L(2s—2h) and L(3s—2h—p) are collected together in table 5.31.

TABLE 5.31. PRINCIPAL LOCAL TIME TERMS IN THE LUNAR AND
LUNAR ELLIPTIC MAGNETIC TIDES

L(25s—2k) L(3s—2h—p)
of the form P7 174 cos (t* — 25+ 2k +86°) P 93 cos (t* —3s+2h+p+93°) P}
254 cos (2t* — 25+ 2+ 261°) P2 84 cos (2t* — 35+ 2h+ p + 284°) P2
134 cos (3t* — 254 2k + 93°) P} 26 cos (3t* — 3s+ 2k +p+ 89°) P3
of the form P74 117 cos (¢* — 25+ 2k + 245°)P1 33 cos (t* —3s+ 2k +p+274°) P}
108 cos (2t* — 25+ 2k + 79°) P} 17 cos (2t* — 3s+ 2k +p+ 109°) P

The ratio of the tides M, and N, in Doodson’s tide-generating potential is 0.17387/0.90812 =
0.19, and it is clear from table 5.31 that the ratios of the corresponding diurnal and semi-
diurnal magnetic tides in L(3s— 2k —p) and L(2s—2h) are greater than this. Because the tides
M, and N, appear in the tide-generating potential with the same phase, it is of interest that,
with the exception of P, the phase angles of the elliptic magnetic tide are in advance of the
principal lunar magnetic tide.

From table 5.31 it is clear that in both lunar and lunar elliptic magnetic tides the amplitude
of the P? external local time term is greater than that of the corresponding P2 term. Also the
phase-angle differences between the P2 and P? terms are close to 180° for both L(2s— 2A4) and
L(3s—2h—p). These results indicate that the wind velocity producing the principal local time
terms in both L(2s—2k) and L(3s— 2k —p) is predominantly of the (2, 2) mode. The different
oscillation eigenvalues (or equivalent depths) for this mode are 7.07 km and 6.67 km for M,
and N, respectively. The different eigenvalues give different rates of upward propagation
through the atmosphere, which gives rise to the phase-angle advance of the elliptic magnetic
tide over the principal lunar magnetic tide. The amplitude ratios P2/P3 for L(2s—2h) and
L(3s—2h—p) are 0.43 and 0.20 respectively. It will be shown in §6 that this indicates that a
different combination of the modes (2, 2) and (2, 4) is required for L(2s — 2A) and L(3s — 2k —p)
wind systems.

It can also be seen from table 5.31 that the amplitude of the diurnal term for L(3s — 24 —p)
is greater than that of the semi-diurnal term. The reverse is true for L(2s—2A4). On the basis
of Chapman’s dynamo theory, a model for ionospheric conductivity is required for L(3s — 24 — p)
that has a very strong diurnal term. Alternatively, a diurnal wind component could be postu-
lated, but this seems unlikely given the semi-diurnal nature of the N, gravitational tide.

4-2
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Chapman (1915, 1918) studied the lunar magnetic tide and its changes with lunar distance.
His results, and the more recent results of Arora & Rao (1975), can be summarized by noting
that the amplitude of the lunar magnetic tide increases from apogee to perigee by an amount
comparable with, though perhaps less than, the increase in the tidal force of the Moon, and
that over the same time there is a phase angle advance through about 20° or 25°. Precisely
these results are contained in the semi-diurnal local time phase-law terms P3 for L(2s— 24) and
L(3s—2h—p):

254 cos (20* — 25+ 2h+ 261°) P%+ 84 cos (2t* — 35+ 2h + p + 284°) P3. (47)

The Moon is at perigee, its point of closest approach when s —p = 0, when the east longitude
of the mean Moon and the perigee of the mean Moon are equal. At perigee then, 3s—22—p =
25 —2h, and the lunar semi-diurnal magnetic tide evaluated on such a day, by using equation
(47), would have the form

254 cos (2t* — 25+ 2k + 261°) P2+ 84 cos (2t* — 25 + 2k + 284°) P}
= 333 cos (2t* — 25+ 2h + 267°) P3. (48)

Similarly at apogee, the point on the Moon’s orbit furthest from the Earth, s—/& = 180°, and
the lunar semi-diurnal magnetic tide, evaluated by using equation (47), would be

254 cos (20* — 25+ 2k + 261°) P2— 84 cos (26* — 25+ 2h + 284°) P}
= 179 cos (2t* — 25 + 2 + 250°) PL. (49)

It will be seen from equations (48), (49) that the phase of the P% lunar semi-diurnal magnetic
tide advances by 17° from apogee to perigee and that there is a corresponding increase in
amplitude given by 333/179 = 1.86. The phase angle advance is associated with the different
equivalent depths of the fundamental (2, 2) modes of atmospheric oscillations for the tides
M, and N,, and should not be confused with a similar phase angle advance resulting from sub-
division of data into four lunar-distance groups PER, REC, APO, NEA, (perigee, receding,
épogee, nearing). By using the numbers given in equation (84, ¢) for the amplitudes of M,
and N,, the apparent increase in tidal potential from apogee to perigee is given by

(0.90812 +0.17387) /(0.90812 — 0.17387) = 1.47,

which is smaller than the ratio 1.86, as already noted by Chapman.

The lunar elliptic magnetic tide includes a diurnal, zonal U.T.-dependent, phase-law term
77 cos (¢—~3s +2h+p+47°) PY, and a similar partial tide term 114 cos (¢+ 35— 2k —p + 68°) PY.
The partial tide has the second largest amplitude of all the L(3s— 2k —p) partial tides. The
corresponding L(2s—2k) partial tide has the largest amplitude of all the L(2s—2hk) partial
tides. The origin of these terms is a U.T.-modulation of the zonal current systems associated
with magnetic disturbance by the diurnal motion of the geomagnetic axis and the auroral
zones about the geographic axis. For L(2s—2hk) the magnetic disturbance current systems are
associated with the second ‘harmonic’ of the 27-day recurrence tendency of sunspots and
magnetic activity, and for L(3s—2k—p) the third ‘harmonic’ of the same tendency. Sectorial
local time terms P7; in L(3s — 2k —p) are given in table 5.32, along with the corresponding terms
in L(2s—2h) for comparison. The L(3s— 2k —p) terms come into phase at local noon as do the
L(2s—2h) terms. The presence of substantial partial tides indicates that some mechanism is
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required other than that for the principal local time terms Pj,. It is suggested that a long-
period 3s—2h—p modulation of the P} component of ionospheric conductivity, associated
with the third ‘harmonic’ of the 27-day recurrence tendency, interacts with the electric fields
that produce the principal local time terms (with constant ionospheric conductivity). That
the L(3s—2kh—p) sectorial local time terms are greater than those of L(2s—2k) may be a
consequence of the ‘period’ of 3s—2k—p being closer, at 9.6 days, to the third harmonic of
the 27-day recurrence tendency than the ‘period’ of 2s— 2k, at 14.6 days, is to the second
harmonic of the same 27-day recurrence tendency.

TABLE 5.32. EQUATOR-SYMMETRIC SECTORIAL LOCAL TIME TERMS IN L(3s— 2k —p)

L(2s—2k) L(35s—2k—p)
phase-law 33 cos (% — 25+ 2k + 157°) P} 91 cos (t* —3s+2k+p+37°) P}
69 cos (2t* —2s+ 2h+297°) P2 98 cos (2t* — 35+ 2k +p+ 214°) P}
48 cos (3t* — 25+ 2k + 120°) P3 26 cos (3t* —3s+ 2k +p+ 80°) P}
9 cos (41* — 25+ 2h+ 330°) P4 19 cos (4% — 35+ 2h+ p+ 333°) P4
partial 49 cos (t* + 25— 2k + 185°) P} —
46 cos (2t* + 25— 2k + 53°) P2 75 cos (2t* + 35— 2k — p+ 306°) P2
25 cos (3t* + 25— 2k +271°) P3 32 cos (3t* + 3s— 2k —p+ 166°) P}
15 cos (4t* + 25— 2k + 142°) P} 11 cos (4t*+ 35— 2h—p+9°) P}

TABLE 5.33. WESTWARD-MOVING, SECTORIAL NON-LOCAL TIME TERMS IN L(3s— 2k —p)

phase-law partial
24 cos (29 +t—3s+2k+ p+ 86°) P2 27 cos (2¢p+ ¢+ 3s—2h—p+ 112°) P%
37 cos (3¢ + 2t— 3s+ 2k + p+ 317°) P3 —
23 cos (44 + 3t— s+ 2+ p+ 226°) P} 11 cos (4¢+ 3¢+ 3s— 2h—p+5°) P}
12 cos (5¢ + 4t — 35+ 2k + p+ 51°) P2 —
90 cos (P + 2¢t—3s+2h+p+173°) P} 120 cos (¢ + 2t+ 35— 2h— p+ 60°) P}
47 cos (2¢+3t—3s+2h+p+26°) P2 56 cos (2¢ + 3¢+ 3s— 2k —p+ 235°) P2
19 cos (3¢ + 4t — 3s+ 2k + p+ 203°) P3 10 cos (3¢ + 4+ 35— 2k — p+ 352°) P}

The L(35—2h—p) phase-law and partial tides include non-local time terms, sectorial,
westward-moving and symmetric about the equator. These terms are collected in table 5.33,
and similar terms have been found in all the magnetic tides examined so far. The L(3s — 24 —p)
group do not come into phase at local noon as strongly as do the same terms in L(2s— 24),
and comparison of phase angles of corresponding terms in tables 5.6 and 5.33 for L(2s—2A)
and L(3s—2h—p) respectively shows no simple consistent relation such as that noted for the
local time terms, both sectorial Pj and tesseral P}, which show a phase lead and phase lag
respectively.

The lunar elliptic magnetic tide L(3s—2k—p) contains zonal, U.T.-dependent phase-law
and partial tides, listed in table 5.34. The amplitudes of these terms are about half those of
the corresponding zonal terms in the principal lunar magnetic tide L(2s — 2/) given in table 5.4.
The zonal, U.T.-dependence indicates an origin in the daily variation of a zonal overhead
current system that is associated with the diurnal motion of the geomagnetic axis and auroral
zones about the geographic axis. The parameter 3s—2h—p in both phase-law and partial
tides indicates a further modulation near the third ‘harmonic’ of the 27-day recurrence
tendency, with a period of 9.61 days.
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The partial tides for L(3s—2k—p) are different from those of other magnetic tides in that
certain terms in the spherical harmonic representation are greater than the corresponding
terms for the phase-law tides. Indeed, at some observatories, e.g. Furstenfeldbruck as in §3,
the L(3s—2h—p) partial tides are greater than the corresponding phase-law tides, although
this is not true at all observatories. Partial tides about equal to the corresponding phase-law
tides cannot be produced by dynamo action involving an atmospheric tide, N, for L(3s — 2k —p),
and are more likely to be produced by a long-period variation, e.g. the third harmonic of the
27-day recurrence tendency, interacting with the electric fields that, with an ionosphere of
constant conductivity, give rise to the principal local time magnetic tides Py ;.

TABLE 5.34. ZoNAL, DIURNAL, U.T.-DEPENDENT TERMS IN L(3s— 2k —p)

phase-law partial
77 cos (t—3s+2kh+p+47°) P9 67 cos (¢+3s—2h—p+3°) PY
36 cos (t—3s+2h+p+195°) P9 114 cos (¢+3s— 2k~ p+ 68°) P2
27 cos (t—3s+2k+p+332°) P} 32 cos (t+3s—2h—p+27°) P
25 cos (t—3s+2kh+p+178°) P 20 cos (¢+3s—2k—p+211°) PY

TABLE 5.35. PRINCIPAL LOCAL TIME PHASE-LAW TERMS FOR L(35—3k—p) AND L(3s—h—p);
SEASONAL CHANGE OF THE LUNAR ELLIPTIC MAGNETIC TIDE L(3s— 2k —p)

L(3s—3k—p) L(3s—h—p)
terms of the form P 123 cos (¢*—3s+3h+p+319°) P} 70 cos (t* —3s+h+p+ 175°) P}
97 cos (2t* — 35+ 3h+p + 143°) P2 46 cos (2t* — 35+ h+p-+ 68°) P2
52 cos (3t* — 3s+ 3h+p+315°) P3 26 cos (3t* — 3s+ h+p+ 240°) P3
17 cos (4t* —3s+ 3h+p+103°) P, 19 cos (4t* —3s+h+p+ 34°) P4
terms of the form P7,, 21 cos (8% —3s+ 3k +p+ 67°) P} 34 cos (t*—3s+h+p+74°) P}

26 cos (2y* — 35+ 3h+p+218°) P}

Seasonal variation of the lunar elliptic magnetic tide

The magnetic tides L(3s—3kh—p) and L(3s—h—p) contain the seasonal variation of the
lunar elliptic magnetic tide which proceeds at the rate of 1 c/a. Spherical harmonic coefficients
are given in tables 8.7, 8.9, with contours of the equivalent overhead current system given in
figures 8.7, 8.9. The principal local time phase-law terms, of the form P}, are collected in
table 5.35.

The amplitudes of terms listed in table 5.35, other than P}, are about one half to one third
of the corresponding terms in the seasonal variation of the principal lunar magnetic tide,
L(2s—3h) and L(2s—A) listed in table 5.17. The phase angles of L(2s—3A) and L(3s—3h—p)
show good agreement, although the phase angles of L(2s—#4) and L(3s—h—p) are more dis-
parate. The disparity may be associated with the dynamo contributions of the atmospheric
tides O, to L(25—2h) and Q, to L(3s—h—p), but may also indicate a lower level of meso-
spheric control over the seasonal change of L(3s—2k —p) than over L(2s—2hk). The principal
diurnal terms P} of L(3s—3h—p) and L(38s—h—p) come into phase when ~ = 108° and 208°
(about the 10 July and 9 January), which is closer to the corresponding results for the solar
magnetic tides $—(k) and S+(A), A = 100° and 280°, than to that for the lunar magnetic tides
L(2s—3h) and L(25~#), for which £ = 135° and 315°.
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The seasonal variation of the diurnal and semi-diurnal local time lunar elliptic tidal terms
is given by
(a) diurnal,
93 cos (t*¥—3s+2h+p+93°) P1+ 123 cos (¢* —3s+3h+p +319°) Pl

+170 cos (¢* —3s+h+p+175°) P},
(b) semi-diurnal,

84 cos (2t* —3s+ 2+ p + 284°) P3
+97 cos (2t* —3s+3h+p+ 143°) P34+ 46 cos (2t* —3s+h+p+ 68°) P3.
Thus the seasonal change of the lunar elliptic magnetic tide is relatively as great as that of the

principal lunar magnetic tide L(2s—2k), and the description of the phenomenon as a failure
of the dynamo in the winter hemisphere is still appropriate.

TABLE 5.36. EQUATOR-ANTISYMMETRIC LOCAL TIME TERMS IN L(35—3k—p) aND L(3s—h—p)

L(3s—3h—p) L(3s—h—p)

phase-law 51 cos (t* — 3s+ 3k +p+ 287°) P}

8 cos (4t* —3s+3h+p+1°) P4

partial 51 cos (t*+ 35— 3k—p+ 150°) P}
18 cos (2t* + 35— 3h—p+ 90°) P2

10 cos (4t* +3s—3h—p +81°) P}

111 cos (¢* —3s+h+p+ 104°) P}
53 cos (2t* —3s+k+p+278°) P2
42 cos (3t* —3s+k+p+ 108°) P2
2% cos (4¢* — 35+ h+p+ 338°) P4

76 cos (t*+3s—k—p+ 188°) P}

19 cos (2t* +3s—k—p+213°) P2
15 cos (3t* +3s—h—p+ 341°) P3
10 cos (4t*+3s—h—p+ 138°) P}

TABLE 5.37. ZONAL PHASE-LAW AND PARTIAL TIDES IN L(35s—3k—p) AND L(3s—h—p)

L(3s—3h—p)
phase-law 57 cos (t—3s+3h+p+251°)PY

L(3s—h—p)
183 cos (t—3s+h+p+288°) P?

68 cos (t—3s+3h+ p+ 293°) P —
28 cos (t— 35+ 3h+ p + 285°) P —

partial 243 cos (t+3s—3h—p+97°)P? 109 cos (t+3s—h—p+303°) P9
53 cos (t+ 3s—3h—p+262°) P 29 cos (t+3s—h—p+81°)P)
32 cos (t+35s—3h—p+137°) P 36 cos (¢+3s—h—p+283°) P2
29 cos (t+3s—3k—p+177°) P} 23 cos (t+3s—h—p+36°) P?

A group of local time terms, antisymmetric about the equator, appears in phase-law and
partial tides for L(3s—3h—p) and L(3s—h—p), and the relevant terms are collected in table
5.36. These tides are of the same order of magnitude as the local time equator-antisymmetric
terms in L(2s —3h) and L(2s—4), and are given in table 5.18. For such terms it was postulated
that a periodicity in a P$ component of ionospheric conductivity associated with the second
harmonic of the 27-day sunspot recurrence tendency interacted with the electric fields produc-
ing the equator-symmetric local time P} terms in the solar magnetic tide. It is now postulated
that the #hird harmonic of the 27-day sunspot recurrence tendency in the same theory gives
rise to the terms of table 5.36.

L(3s—3h—p) and L(3s—h—p) contain zonal, U.T.-dependent phase-law and partial tides,
listed in table 5.37. The amplitudes are roughly equal to the amplitudes of the zonal U.T.-
dependent terms in L(2s—3k) and L(2s—#), listed in table 5.19. It is suggested that these
terms are associated with the diurnal motion of the geomagnetic axis and the auroral zones
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about the geographic axis, modulating zonal current systems associated with the third harmonic
of the 27-day recurrence tendency. The parameters 3s— 3% —p and 35—k —p have periods 9.9
and 9.4 days respectively.

TABLE 5.38. SECTORIAL, WESTWARD-MOVING, NON-LOCAL TIME
PHASE-LAW TIDES IN L(35s—3h—p) AND L(3s—h—p)

L(35—3h—p) L3s—h—p)
62 cos (P + 2t —3s+ 3k +p+ 283°) P} 52 cos (P+2t—3s+h+p+42°) P}
33 cos (2¢+ 3t —3s+ 3k +p+ 157°) P2 22 cos (2¢+ 3t —3s+h+p+225°) P2

— 12 cos (3¢ + 4t —3s+h+p+19°) P3

terms evaluated at local noon ¢t* = t+¢ = 180°

62 cos (t—3s+ 3h+p+103°)P1 52 cos (t—3s+h+p+222°) P}
33 cos (¢—3s+3h+p+157°) P2 22 cos (¢—3s+h+p+225°) P}
— 12 cos (t—3s+h+p+199°) P3

TABLE 5.39. SECTORIAL, LOCAL TIME PARTIAL TIDES IN L(8s—3h—p) AND L(3s—h —p)

L(35—3h—p) L(3s—h—p)
88 cos (t* + 35— 3h+p+ 45°) P} 68 cos (t* +3s—h—p+209°) P}
60 cos (2t* + 35— 3h—p -+ 223°) P2 34 cos (2* + 35— h— p+ 347°) P2
23 cos (3t* + 35— 3h— p+ 3°) P3 21 cos (3t* + 35— h— p+214°) P3

A group of sectorial, westward-moving non-local time phase-law terms are given in table 5.38.
The groups for L(3s—3h—p) and L(3s—h—p) are seen to have about the same phase-angle at
local noon, although the coincidence of phase angles in the two groups is not as pronounced
as it is for the seasonal tides L(2s—3k) and L(2s—#A) in table 5.20. The semi-diurnal P} terms
come into phase when A = 60° or 240° (about 23 May or 22 November respectively), about
two months earlier than the corresponding terms in L(2s—34) and L(2s—#4). At A = 60°, the
P and P} terms,

114 cos (¢ + 2t —3s+2h+p+ 343°) P} + 53 cos (2¢ + 3t — 35+ 2h + p + 204°) PZ,

are to be compared with the principal local time terms from L(3s—2k—p), from table 5.31,
written in the form

93 cos (¢p+t—3s+2h+p+93°) PL+ 84 cos (2¢ + 2t — 35+ 2h + p + 284°) P3.

Hence the elliptic magnetic tide will be greatly modified by the sectorial, westward-moving,
non-local time terms in L(3s—32—p) and L(3s—h—p), especially in equatorial regions where
the sectorial functions and their gradients are greatest.

Finally, as with L(2s—3hk) and L(2s—#h), there is a group of sectorial, local time partial tides;
they are listed in table 5.39. They are of the same order of magnitude as the corresponding
tides in L(2s—3h) and L(2s—h) given in table 5.21, but smaller than the corresponding phase-

'law terms (the principal terms) in L(3s— 3k —p) and L(3s—h—p) listed in table 5.35.

Long-period tides

Spherical harmonic coefficients for internal and external components of long-period tides
are given in table 8.13. It will be seen from this table that the long-period tides based on lunar
parameters are all dominantly of a zonal P{ type. Given the relation between the ‘periods’ of
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the lunar parameters, as in equation (6), e.g. 25 — 2k and 3s — 24— p, with the second and third
‘harmonics’ of the 27-day recurrence tendency in sunspots and magnetic activity, such long-
period magnetic fields appear to originate in ring current systems about the Earth, in which
the current flow oscillates with the relevant period. From the list of external components of
long-period tides given in table 5.40, it is apparent that the phase angles tend to be near either
0° or 180°. Analysing the data used in the present paper, for periods of from 4 to 30 days,
Anderssen et al. (1979) found that the phase is essentially constant with a mean value of 165°.
The increase in amplitude as the period approaches either 13.5 or 9.0 days is quite noticeable
in table 5.40. As already indicated, such periodicities correspond to the second and third
harmonics of the 27-day recurrence tendency, or could be associated with the long-period
tides noted by Shiraki (1974) and Kitamura (1979).

TABLE 5.40. LONG-PERIOD TIDES

597 cos (2s—4h+ 331°)P? 16.06 days
387 cos (25— 3k+ 9°)P? 15.39 days
652 cos (25— 2k + 189°)P9¢ 14.77 days
905 cos (2s—h+ 164°)P¢ 14.19 days
1135 cos (2s+ 164°)PY 13.66 days
" 325 cos (3s—3k—p+27°)PY 9.87 days
176 cos (3s— 2k —p+ 330°) P9 9.61 days
854 cos (3s—h—p+ 24°)PY 9.37 days

TABLE 5.41. ANNUAL AND SEMI-ANNUAL LONG-PERIOD TIDES

internal external
annual 4417 cos (h+ 174°)PY 653 cos (h+309°) P?
3969 cos (h+ 356°)P2 2007 cos (h+ 68°) P3
semi-annual 1694 cos (2k+251°) P} 1732 cos (2k+ 301°) P
1808 cos (2h-+ 58°) P2 1290 cos (2k-+82°) PY

The long-period tides, other than the annual and semi-annual tides, have internal coefficients
smaller than external coefficients, consistent with the hypothesis of an external ring current
origin. However, for the annual and semi-annual long-period tides, the internal term exceeds
the external term (see table 5.41). All the magnetic tides of the present paper, including all
long-period tides, have been computed by using a// hourly mean values, whereas in studies
of the annual and semi-annual tides specifically, e.g. Lewis et al. (1955), Malin & Mete Isikara
(1976), only the hourly mean values for local midnight are used. By this means any contri-
bution from the annual variation of the solar magnetic tide S or Sy is minimized. It is also a
practice to exclude observatories in high latitudes, because, as Malin & Mete Isikara (1976)
noted, Fourier coefficients for the annual long-period tide in high latitudes fluctuate erratically.
By using the data of the present paper, numerical experiments excluding certain groups of
observatories from the spherical harmonic analysis of long-period tides obtained from all-day
data yielded different numerical values for the annual and semi-annual spherical harmonic
coeflicients but did not alter the dominance of internal terms over external terms.

Given the value of long-period terms for induction studies and electromagnetic modelling
of the Earth’s interior, it is disappointing to find that an analysis of the most widely distributed
data available should show that the annual and semi-annual long-period terms are of internal
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origin. There is however, definite value in having an entire collection of coefficients for mag-
netic tides computed by the same method from the same data, and for this reason the results
for the annual and semi-annual tides have not been excluded. In seeking possible physical
causes, one is led to consider that poor baseline control at certain observatories might be
responsible. Baseline errors give long-period Fourier coefficients with large standard deviations,
and such coeflicients are not given much weight in numerical analysis by the method of least
squares. All equations of condition have been weighted so that the Fourier coefficients have a
standard deviation of unity. Errors in baseline control would affect all the long-period results
and not just the annual and semi-annual magnetic tides alone.

The zonal nature of the spherical harmonic coefficients for the annual and semi-annual
long-period tides precludes their origin in the oceans which are sectorial in nature. There are
however, the possibilities of annual and semi-annual variations in Earth currents of deep
origin (Roberts & Lowes 1961), or movement of the magnetic variometer pier due to perma-
frost action, or a change of magnetic moment of rock in regions near the observatory with
temperature (Rodgers 1980).

6. JONOSPHERIC DYNAMO THEORY AND HOUGH FUNCTIONS

The purpose of this section is to show the very simple relation between the theory of Hough
functions as developed by Longuet-Higgins (1968) and the observed magnetic tides.

When an electric field E is applied to an ionized gas in the presence of a magnetic field B,
as in the ionosphere, the resulting electric current density J depends upon the relative orienta-
tion of the electric and magnetic fields. In general, E may be resolved into components E,
and E,, parallel and perpendicular to B, respectively, and if b is a unit vector parallel to B,
then the current density J is given by Baker & Martyn (1953) as

J =0yEy+0,E,+0,(bx E), (50)
where E,= (E-b)b
and E, = E—-(E-b)b.

The parameter o is the longitudinal or parallel conductivity, while o, o, are Pedersen and
Hall conductivities, respectively. Typical noon values 120 km above the equator at the equinox
during conditions of average solar activity are given by Forbes & Lindzen (1976) as

0y = 1.0, o, = 0.0004, o, = 0.006 A V-1m, (51)

which vary with magnetic inclination and local time.

At the higher altitude of the F-region, o, becomes still larger than o, or o,, and hence any
E parallel to B is neutralized by the rapid movement of electrons. In the F-region, therefore,
the lines of magnetic force are lines of constant electric potential.

Let J and E have spherical polar components given by

J = Je.+Jpey+Jse
r€rtJg€y+ Jyey, } (52)
where e,, ey, e; are unit vectors in the direction of 7, 6, ¢ increasing, i.e. upwards, southwards
and eastwards, respectively.
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The radial component of current J, is found from equation (50) to be
Jp = (E,/B%) {(09—01) By + 0, B}
+ (E9/B?) {(09—01) ByB,— 0, BB} (53)
+ (Ey4/B?) {(0g—01) By B, + 0, BB}
For ionospheric current systems flowing in the E-region, the currents are regarded as flowing

in a spherical shell, and J, is assumed to be zero. This assumption gives E, as a function of
E4 and E,. Hence it can be shown that

.]0 = 0'00E0+0'0¢E¢, J¢ = 0'¢0E0+0'¢¢E¢, (54)
where o = 0'0‘7132“(‘700'1_0?"‘72)335
o0 oy B; + o, (Bj + Bj) ’
P (%0'1‘“0'21—0'3)303'»—0'20'0331-
o¢ ooB%+0y(Bj+ Bj) ’ (55)
oo = (090, —0%—03)ByB,+0,0,BB,
# o Bty B3+ B)
Oar = 0'00‘132—(0'00'1—0'§—0'§)B§
# 0B+ 0y (BS+ B) ’

from which it will be clear that 0,5 = — 07y only when B, = 0 or By = 0.

The assumption that J, = 0 does not apply in the auroral region, particularly during
magnetic disturbances. The present analysis, although including auroral observations, has
excluded disturbed days, and only partly represents effects originating in the narrow auroral
region (or the electrojet region). Dynamo theories including vertical, or field-aligned, currents
linking the ionosphere and magnetosphere have been developed by Maeda & Murata (19653),
Fukushima (1968), Price (1969), van Sabben (1970, 1971), Matsushita (1971), Mishin et al.
(1971) and Stening (1977b). A series of papers on Sq dynamo theory dealing with several
developments have been given by Wagner (19684, ¢, 1971) and Méhlmann (1971-1977).

We now assume that the Earth’s main magnetic field is that of an axial dipole with potential
PY(cos 0), where 6 now represents the geomagnetic colatitude. Let a, R be the radii of the iono-
sphere and Earth respectively. Thus R/a = 6371/6486 = 0.9823. At the level of the ionosphere,
the geomagnetic main field components are given by

B, = 2(R/a)3G cos 0, B, = (R/a)3Gsin0, B, = 0. (56)

The tensor components of conductivity reduce to

o — 0901(1+ 3 cos? 0)
% = 44, cos? 0 + o, sin® 6’
> = T200C0S 6(1+ 3 cos? 6)}
% = " 40,cos® O+ o0, sin2 0 ’ (57)
Tg9 = — Tpgs
o = 40,0, cos? 0+ (03 + o}) sin% 0
¢ = 40,cos? O+ 0, sin2 0 )
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With the numerical values given for ¢, ¢, 0, in equation (51), in the ionospheric E-region,
Tog R O, Ogy R Opy Oy X Oy (58)
The relation between current and electric field can be expressed as
Jp = o1 Byt 0By, Jy = —0yEg+ 0, By (59)

A local time factor (see, for example, Forbes & Lindzen 1976), must be applied to each com-
ponent of conductivity. Equation (59) integrated throughout the ionosphere may be written

1.70 = CIE0+C2E¢, J¢ = —02E0+CIE¢. (60)

Integrating equation (59) to a height of 150 km from the base of the ionosphere, Ferris & Price
(1964) give the following:

C, = 0.854 x108, C, = 1.455 x 108 e.m.u. cm.

Swift (1972) examined the validity of such formulae. In the ionospheric E-region, an electric
field E arises by dynamo action from movements of electrically conducting material with
velocity » through the geomagnetic main field where

E =ovxB. (61)

The resulting currents, with density J, flow without the continuing accumulation of charge
at any point and, hence, the region being assumed to have constant electrical permittivity e,

V.E = 0, (62)

i.e. the electric field is solenoidal. Such vector fields can be represented as a sum of poloidal
87 and toroidal T fields:

n(n+1) ., m
Er - %Em %Sn (7) Yn (0¢),
_ 1 dSp oYy 1 T(r)dYy
B =z {FW 0 "7 sin0 0g } (63)

1dSpoym 1, oYm
Ey= X (rz‘d—f“ags ;I W)
(see, for example, Bullard & Gellman 1954), with Y?(0¢) = Pp(cos 0) e™?.
Poloidal and toroidal functions are orthogonal over the surface of a sphere, so that equation
(63) provides a suitable representation of the field.

The meridional and azimuthal components of the dynamo electric field can be written more

briefly as

108 1 0T 1 3§ 10T

Eo= ot asmosg B¢~ ssmodg 230 (64)

The poloidal field § as indicated in equation (63) has a radial component, and is therefore

unable to drive a steady current system in the ionospheric conducting shell; it does give rise

to an electrostatic field. The toroidal electric field T with no radial component is able to

drive the ionospheric current system that gives rise to the time-varying magnetic fields observed
at the surface of the Earth as magnetic tides.
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Let the spherical polar components of the velocity » and magnetic field B be given by

(w, u, v) and (B,, By, By), respectively. The spherical polar components of the dynamo electric
field are then given by
(vx B), = uBy—vB,,

(v X B)e = 'UB,.—wB¢, (65)
(vx B)y = wBy—uB,.
The spherical polar components of the geomagnetic main field are given by B =-VU,i.e.
oUu 19U 1 U
Br "'_E, B0 =_;_6B—’ B¢ =_m'@-’ (66)
where the scalar potential
n+1
v-rx ()" crrros, (67)
n, m
and the G} are known complex constants. We shall use only
R3 R
U=-ﬁG‘{Y‘{=r—20‘1’cos0, (68)

which is the potential of an axial dipole.

In common with the theory of atmospheric tides (Siebert 1961; Jones 1970, 1973) we assume
that the vertical component of velocity w is small when compared to the horizontal components
u,v. In a sphere of radius 7 = a, the 6, ¢ components of the dynamo electric field give, by
using equations (61), (64)—(66),

_oUu 1 (as 1 aT)

"o T 2\0"sin0ag )
(69)
UL e
Or  al\sinfop 00
The 0, ¢ components of the electric fields driving the current system J are given (withr = a) by
1 0T 1T
Ey = asin 0 3¢’ E R (70)

The magnetic tides are represented by a scalar current function £, as a toroidal current
system flowing in a thin shell of radius r = a:

1 o 1 0%
0=asin0-5$’ J¢=—EW' (71)

It follows directly from equations (60), (69)—(71) that

1 gg=_cl((waU 6S)+C( ou_ 1 a_s_)

sin 0 0¢ or ' 00 o sinfdg)’ (72)
_@_C( 6U+E)S)+C LU 128
00 ~ 2 \"orTee) T\ o sineéa)'
Equation (72) can be ‘solved’ to obtain
w0, —1 (G %R
or "0 Cit+Ci s1n06—¢ 290)’ 73)
LU 1 as 1 (02 % Ca.%)
or sin6dp Ci+C3\sinf 3 * 00
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Eliminating the function S from equation (73) we obtain

2
a—a—(v%])+ a(usmHaU)-— C{a(smﬁa'%) ! %}

¢ 00 or 00 00 ) " sin 6 0¢®
0C, 0% 1 0C, 0%
_ 8 74
—sin ‘9{60 20 520 39 a¢l’ (74)
where G = G/(C1+CY (1)
is a form of the Cowling conductivity o3 based on height-integrated values of o}, o,.
The current function Z is independent of 7, and consequently
oC, 0% 1 0C, 0% VG, V. (76)

30 90 T5nt 0 0p 0g
Daily variations in the conductivity Cs produce 1, 3, and 4 c/d magnetic tides from a semi-
diurnal wind velocity and an axial geomagnetic dipole. Constant conductivity C; with a semi-

diurnal wind velocity, with Chapman’s (1919) dynamo theory, gives a good estimate of the
semi-diurnal magnetic tide. Consider C; as a constant in equation (74), then equation (67)

reduces to
0 oU 0 oU 0 4 1 0%
= —_— 77
6¢( )+a60 (usm0 ar) -G, {60(51n080)+sin06¢2}' (77)

If an external magnetic tidal potential, V, with coefficients ¥} in nanotesla, and R in kilo-
metres,

V-R3 (%)" ymYm(0g), (78)

is produced by a steady surface distribution of current over a sphere of radius r = @ (the
ionosphere), then the corresponding current function £ for the toroidal current system, with
a poloidal magnetic field equivalent to the observed magnetic tide, is given in amperes by
Chapman & Bartels (1962, ch. 17, §18)

&= 3 ALYLOY), (19)
n, m
w_ 10R (a\"2n+1
where w =g (7) T

Here R = 6371 km, a/R = 6486/6371 (cf. equation (29)). Substitution of equation (79) into
equation (77) gives

0 ([ aU 0 ou 10C,R aA\"™ v o
agq—s (v a—r)+a H (u51 0 r) in n’zmn(2n+1) (T?) Vit Yt sin 6. (80)

Consider now only the axial dipole term in the geomagnetic potential

U=-(R/r®)Gcost, G=|GY,

which gives, at ionospheric levels r = a,

oUu R\3 10U R\® ., .
ar = (-E) G cos 0, z—a—-é' = (z’) Gsin 6.

The dynamo equation (80) now becomes

1
sin 0

qu

{660 (usin 6 cos 0) += (v cos 0)} = nzm n(2n+1) (%)n+2 Vit YR(09). | (81)

a¢
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The equations of motion for atmospheric tides are linearized Eulerian equations of hydro-
dynamics for small oscillations of the atmosphere about a configuration of static equilibrium
on a rotating Earth, namely

u 10F

5—-—2.{21) cosf = —=— =90 (82)
v 1 oF

5— +20Qu cos 60 = Ty 06—_95' (83)

The function F represents the scalar potential of conservative forces

F=2%8p/p+T.

Assuming el°t time-dependence for the functions u, v, F, and ¢ dependence upon longitude,
the equations of motion become

iou—2Qv cos @ = —(1/a) 0F/00, (84)
iov+ 20u cos 0 = — (im/a sin 0) F. (85)

The geophysical relevance of these equations is discussed by Stewartson & Walton (1976).
Solving for u, v, we obtain

io 0

U= R —cos D) (aa 7 ot ‘9) F, (86)
-0 cos 0 m

v= 4a0%( f%—cos? 0) ( f 20" sin 6’) (87)

where f = o/20.
After Love (1913), Price & Cocks (1969) and Longuet-Higgins (1968), functions @ and ¥
are introduced analogous to the velocity potential and stream function:

@ 1 oV 1 0@ oY

=W TSm0 T 03 00 (88)
With this representation we find that
e [2; 0?9 (usin 0)] - Vo, (89)
- [g’é 660 (v sin 0)] - vy, (90)
where the operator V2 represents the horizontal Laplacian operator given by
1 9 0 102
2 - —
Vi= G0 (Sm 0 aa) tonTo 3t
Using equations (86), (87) for u, v, we find that
1 [ow ior
Snd [a¢ 30 (sin ‘9)] = w2 (91)
where the operator £ is defined by
" _ 1 3( sin 0 f_')f)_ 1 [@fucosw m ] g 09
" sinf 00 \f2—cos2030) f2—cos2O | ffi—cos?b sin? 0 (92)
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From equations (89), (91) it follows that
V2D = (io/4a822) LF. (93)
We require eigenfunctions of the operator .2, denoted @7, i.e.
LO7 = — (4a2022/gh") O°. (94)

For a specific value of o, such eigenfunctions form an orthogonal set. The eigenvalue 44a202/gh”
is chosen to correspond to the theory of the oscillations of a shallow ocean of depth % on a
rotating sphere of radius a.

The displacement of the shallow ocean may be denoted { when g¢ corresponds to the
function F used for the scalar potential of conservative forces in the theory of atmospheric tides.
The equations of motion for the shallow ocean are otherwise identical with those of the oscillat-
ing atmosphere. The equation of continuity for the shallow ocean has the form

of  h [ d
% " sinb6 [a¢ 3 (sind )]
which by equation (89) gives V2@ = (io/h) &. (95)
From equations (93,) (94) it follows that for atmospheric oscillations
V2D = — (iao/gh”) O°, (96)
and consequently from equation (96)
(i/2a) V20" = — (gh"/24*Q0) V4®. (97)
1
Now from [ 3% (84) 60{ (85) sin 0}]
1 [0
and prer [6¢ (85 60{ (84) sin 6}]

making use of equations (89), (90) and with the substitution
f=0/22, 3/ = im
we obtain (fV2+m)i¥ — (cos OV2—sin 0/00) P = 0 (98)
(fV2+m)®D— (cos V2 —sin 00/00)i¥ = (i/20a) V2F. (99)

When the function F is an eigenfunction of Hough’s equation (94), derived from the equations
of motion, F = @7, and
(1/2Qa) V3F = (i/2Qa) V26",

— (gh° [2a2Q20) V4D, (100)
by equation (97).
When a parameter ¢ is introduced such that

1/e = gh”[4a202*

and 1/ef = gh"[24*Q0, (101)
equation (99) becomes

{fV2+m+(1/ef) V8 & — (cos V2 —sin 63/20)i¥ = 0. (102)
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Let @ and ¥ be represented by sums of spherical harmonics:

B = 3 ADPI()clmdion, (103)
n=m
W= 3 iBEPR(u) clniion, (104)
n=m
where ¢ = cos 6 and VPR = —n(n+1) P

The functions V2@, being proportional to the displacement § of a shallow ocean, as in equa-
tion (95), are the Hough functions
Vi = 3 —n(n+1) AR PR(u) cimston, (105)
n=m
and the exact form of these functions will depend upon the choice of normalization.

If the Earth’s main magnetic field is represented by an axial dipole, it will now be shown
that the geomagnetic tide resulting from a Hough function, {n(n+ 1) A7}, will have a potential
{V}, that can be derived directly from the function ¥, namely {Bjy}, and that the sets of
coeflicients {4}, {Bx} are linearly related.

From the equations of motion, equations (84), (85), it follows that

s—i—&—a a—ae (u sin 6 cos 6) +% (v cos 0)}
__—io {i(v' 0)—9"-} (Maeda et al. 1979)
= 30smo0\a0 M"Y "o cda el ac- 1979
io

V2¥, by equation (90),

20

= 55 I n(n+1)BIPIcm#ih, by equation (104),
n=m

56, % n(2n+1) (g)n+2 Vi Pmeimétot) by equation (81)
4nG = R o ’ ’
Therefore, of the @ and ¥ components of wind velocity, only the ¥ component produces a
magnetic tide. The following theory will show that associated with any eigenfunction ¥ is a
uniquely determined eigenfunction @. Thus, by including the equation of motion in the
theory of the ionospheric dynamo, the non-uniqueness in deriving the wind velocity from the
magnetic tide (Price 1968) is resolved. By the orthogonality of the associated Legendre func-
tions, it follows from the last equation that

m _ 4nG o n+1 (R\"+2
v ‘5_022_an+1(2) B, (106)

as required, i.e. the magnetic tides associated with the Hough function V2@ are proportional
to V2%, where @ and ¥ are used in the representation of the wind velocity vector as in equation
(88).

Eigenfunction calculations were made as described by Longuet-Higgins (1968), and the
notation used to refer to the various eigenvectors is that of Flattery (1967). The method of
Longuet-Higgins uses f as the required eigenvalue, and starts by estimating a value of the
parameter 1/¢f, which remains constant for the calculation.

5 Vol. 303. A
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To provide a brief description of Hough-function calculations, it will be convenient to
introduce an unnormalized associated Legendre function B, ,,, where

1 2\4 d\m+m 2
Pom = gy (1= () 2= 1 (107)
and D= 3 A, B bt W= 3 iB, P bt (108)
n=m n=m
Recurrence relations are given by
V2Pn,m = _n(n+ 1) Pn,m, (109)
n+m n—m+1
cos OF, , = il Pn—l,m+_m Boim (110)
dB, (n—1)(n+1) (n+m) n(n+2)(n—m+1)
2 smo —
cos OV2E, ,, —sin 0 0 = P ) - on i1 itme  (111)
Equations (102), (98) become respectively
1
([—nto+ fms Sar(os 12 4
n(n+2)(n+m+1 n—1)(n+1)(n—m
+{ ( 2)71(_*_3 ) Bn+1,m ( >(2n__1)( ) Bn—l,m} =0, (112)
nn+2)(n+m+1 n—1)(n+1)(n—m
(ol )=}, - (WDIEIAD) g EDEE DO g, ) =0 (113
which can be written
K A\ +pn+1,mBn+1, +Gn-1, mBn—l m = O:} (114>
Ln,mB m pn+1 mAn+1 m qn—l mAn—] m = O:

Knm = f—m/n(n+1)—(1/ef)n(n+1),
m =f—m/n(n+1),
Prirm = (n+2) (n+m+1)/(n+1)(2n+3),
Gusm = (n=1) (n=m)/(20—1) (2n+1).

The equations form two groups, the first consisting of terms symmetric about the equator,

-Kn, m pm+1, m 0 0 oee l -Am, m ] 07
qm, m Lm+1,m pm+2,m Y oo Bm+1, m 0
0 ’ qm+1,m Km+2, m pm+3,m oo Am+2, m 0

= , (115)
0 0 qm+2, m Lm+3, m AR Bm+3, m O

and the second containing only terms that are antisymmetric about the equator.

For a given tidal frequency o (or f), an infinite number of eigenvectors is obtained, with
eigenvalues in the form of equivalent depths 4%, which for convenience are arranged in des-
cending order of magnitude.
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In terms of Schmidt quasinormalized functions, it will be clear that sets of coeflicients

An B,
m m
A B
m m
Amia |, | Bmss

are obtained simultaneously in the Longuet-Higgins formulation of the eigenfunction cal-
culation.

The series {47} leads to the Hough function, representing the @ component of wind velocity,
while the series {B7} gives the ¥ component of wind velocity, and, by means of equation (106),
the corresponding magnetic tide.

For a given o (or f), a parameter €, denoted €7, is obtained for each eigenvector. The corre-
sponding equivalent depth 4 is given by equation (106) as

40202 1 1 1
= 7 & ie. A= 001135 o’ (116)
where Q is the rate of the Earth’s rotation in radians per second.

Flattery (1967) in his tables 71-72 gives

he = 0.01135/¢” km,
which is apparently a misprint, because the tabulated values are correct. Hough-function
calculations have also been published by Kato (19664, 5), Mohlmann (1975), Jones (1970,
1973), Volland (1974), Chen Zhe-Ming (1979).

Associated with each eigenfunction is a vertical structure or variation of velocity and phase
with height, dependent upon the variation of temperature with height. Comparison of the
vertical structures of the eigenfunctions with the structures expected on the basis of the mecha-
nism of generation, e.g. absorption of u.v. radiation by ozone, restricts the eigenfunctions
relevant to the problem. From the work of Stening (1968, 1969, 19774), Tarpley (19704, b),
Ayamenc (1974), Forbes & Lindzen (1976), Evans (1978), Forbes & Garrett (1979) and
Richmond (1979), the most important modes for diurnal solar and lunar magnetic tides are,
in the notation of Flattery (1967), (1, —2), (1, 1), and for the semi-diurnal solar and lunar
magnetic tides (2, 2) and (2, 4).

For each of the four diurnal local time harmonics computed for the solar and lunar magnetic
tides, the results presented include two spherical harmonic coefficients, corresponding to the
magnetic tide produced by some combination of Hough functions. By using equation (106)
and the known combinations of spherical harmonics in the Hough functions indicated above,
it is possible to obtain an estimate of the appropriate combination of Hough functions.

he

The solar diurnal tide

For the solar diurnal mode S,(1, —2), the first symmetric diurnal rotational (trapped) mode,
the relevant parameters are /' = 0.498634, equivalent depth 2 = —12.2703 km, with a Hough
function in Schmidt quasinormalized functions

P1+40.749795 PL+0.096703 PL+0.005154 P,
and, apart from a multiplicative vfactor 4nGf/5C;, the corresponding magnetic tide is
—0.345514 P}—0.038109 P} —0.001953 P%—0.000057 PL.
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For the solar diurnal mode S, (1, 1), the symmetric diurnal gravitational (propagating) mode,
the relevant parameters are f = 0.498634, equivalent depth 2 = 0.690886 km, with a Hough

function
Pl—3.448455 P} +4.202936 P1—2.660800 P,

and corresponding magnetic tide
0.020349 P} +0.061159 P} —0.049323 P +0.020816 P}.

The trapped (1, —2) mode is therefore seen to be a more efficient producer of magnetic
tides than the propagating (1, 1) mode. The (1, —2) mode generates principally the P} mag-
netic tide, while the (1, 1) mode somewhat inefliciently generates principally the P} magnetic
tide. This supports the work of Stening (1969) and Tarpley (19704) showing that the (1, —2)
mode reproduces the Sy system well.

The observed solar diurnal external local time magnetic tide has dominant terms of the form

(6146 P} — 1100 P}) cos (#* +19°). (117)

Such a magnetic tide would be produced by the following numerical combination of Hough-

function modes:
{—19561 S,(1, —2) —30109 S,(1, 1)} cos (#* +19°), (118)

which indicates that greater velocities in the dynamo-producing region are associated with
the (1, 1) mode rather than the (1, —2) mode. Hines (1966) and Richmond (1971) note that
the average diurnal tide in the 90-120 km region appears to be dominated by the (1, 1) mode.

It has been inferred in the present paper, in §5, that the day-to-day variability of § is
associated with the equator-symmetric local time terms P}, P}, P} in the geomagnetic tidal
potential. Such terms could not be produced by the (1, —2) or (1, 1) tidal modes (Matsushita
1973), and the modes (1, —1), (1, —3) are implicated, i.e. the day-to-day variability of such
modes produces the day-to-day variability of S.

Solar semidiurnal tide

For the S,(2,2) mode the relevant parameters are f = 0.99726956, equivalent depth
h = 7.85193 km, with Hough function

P2-0.339478 P2+ 0.040984 P2—0.002458 PZ,
and, apart from a multiplicative factor 4nGf /5C;, the corresponding magnetic tide is
—0.031232 P%+0.004263 P2—0.000270 P2+ 0.000010 P2.
For the S,(2, 4) mode, f = 0.99726956, 2 = 2.109 79 km with Hough function

P%+4.958338 P2—4.060083 P2+1.191571 P2,
and magnetic tide

—0.127091 P} —0.034474 P2+0.022321 P%—0.004416 P2,

which show that both the (2, 2) and (2, 4) modes act as efficient generators of the P; semi-
diurnal local time term in the geomagnetic tidal potential, but that only the (2, 2) mode is
able to produce the 180° difference between the P} and P2 terms of the geomagnetic tidal
potential.
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The observed solar semi-diurnal external magnetic tide has dominant terms of the form
2922 cos (20* +197°) P2+ 281 cos (2t* + 47°) P2 (119)
and such a magnetic tide would be approximated by the following numerical combination of

tides:
{— 84305 S,(2,2) — 2274 S,(2, 4)} cos (26* +197°) (120)

which shows that the (2, 2) mode is the dominant mode in the dynamo region. This result is
in agreement with the results of Tarpley (19706) and Stening (19774). Forbes & Lindzen
(1976) using a more general form of the dynamo theory than that of the present paper found
that at mid-latitudes the relative contributions of the (2, 2) and (2, 4) modes were roughly
equal, but that the (2, 2) mode accounted for almost all of the equatorial magnetic variation.

However, meteor-trail observations and the analysis of chemical-release trails indicate that
the period of vertical wavelength of wind patterns are near values expected for the (2, 4) mode.
Salah (1974), Salah & Wand (1974), and Salah et al. (1975) show that the (2, 4) mode domi-
nates in the mid-latitude E-region thermal structure in the altitude range 100 to 125 km.
The data of Ayamenc (1974) show that the (2, 2) mode is the dominant semi-diurnal mode
above 130 km, and the (2, 4) mode is dominant below this height. More interestingly, Volland
(1971) considers that the Sy current height of 115 km determined by rocket-borne measure-
ments is only a secondary maximum and that the centre of the S, current system should be
between 130 km and 160 km. Forbes & Lindzen (1976) find vertical current densities that
support the expectations of Volland (1971).

Finally we note that a comparison of equations (118), (120) shows that the semi-diurnal
winds are stronger than the diurnal winds even though, from equations (117), (119), the
diurnal component of § is stronger than the semi-diurnal component. This is in agreement
with the results of Roper (1966) and White (1960). Mohlmann (19766) notes that the iono-
spheric quiet time electrostatic potential is due to the dynamo action of the diurnal (1, —2)
and (1, 1) modes. Richmond ¢t al. (1976) showed electric fields associated with (1, —2) and
(2, 4) modes to be in fair agreement with observations.

Lunar semi-diurnal tide

For the M,(2, 2) mode the relevant parameters are f = 0.963498, equivalent depth
h = 7.070064 km, with Hough function

P3%—-0.374713 P2+ 0.050097 P2—0.003331 P?
and, apart from a multiplicative factor 4nGf/5Cs, the corresponding magnetic tide is
—0.031892 P2+ 0.004 842 P2 —0.000340 P2+ 0.000014 P2,

For the M,(2, 4) mode, f is as for the (2, 2) mode, equivalent depth # = 1.848642 km,

with Hough function
P3+4.408820 P2 —4.194317 P2+ 1.408951 P2,
and magnetic tide
—0.122113 P2—0.026941 PZ+0.023043 P2—0.005310 P3.

The observed lunar semi-diurnal external magnetic tide for 1964-65 has dominant terms

of the form
254 cos (2¢* — 25+ 2+ 261°) P2+ 108 cos (26* — 25 + 2k + 79°) P2. (121)
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Such a magnetic tide would be produced by the following numerical combination of modes:
{—13814 M,(2, 2) + 1528 M,(2, 4)} cos (2¢* — 25+ 2k + 261°) (122)

showing that the (2, 2) mode dominates the (2, 4) mode. The ratio of (2, 4) to (2, 2) modes
is greater for the lunar than for the solar semi-diurnal tides. By comparing equations (119),
(122), it will be seen that the solar semi-diurnal modes (2, 2), (2, 4) have the same sign, while
the lunar semi-diurnal modes have opposite signs. The different combinations of modes also
appears as a disparity in the ratio PZ/P} for lunar and solar semi-diurnal local time magnetic
tides, being 281/2922 for solar terms and 108/254 for lunar terms, as noted in §5.

By analogy with the behaviour of the solar fundamental semi-diurnal (2, 2) tide which
generates higher-order modes (2, 4) and (2, 5) through mode coupling via background winds
in the mesosphere, Evans (1978) suggests that the lunar (2, 2) tide inay also produce higher-
order modes through such coupling. He notes that since the solar (2, 4) and (2, 5) modes
appear to dominate in the lower E-region (105-125 km), the ionospheric effects that have been
attributed to the lunar (2, 2) tide should be re-examined to see if they can be better explained
as consequences of the lunar (2, 4), (2, 5) modes. The results for the lunar semi-diurnal mode
given above indicate that the lunar (2, 2) mode is the dominant mode in the generation of
lunar semi-diurnal magnetic tides, and consequently if the (2, 4) and (2, 5) modes are generated
in the dynamo region through mode coupling via background winds, then they make only a
minor contribution to the observed magnetic tides. From these results and from those for the
solar semi-diurnal tide, it would appear that the lower E-region is not the dynamo region.

Lunar semi-diurnal elliptic magnetic tide
For the Ny(2, 2) mode, f = 0.945406, equivalent depth 2 = 6.66701 km, and the Hough
function is
P2%—-0.395710 P2+ 0.055995 P2—0.003 944 P2,
with corresponding magnetic tide

—0.032227 P2+0.005192 P2 —0.000387 P2+ 0.000017 P2.

For the N,(2, 4) mode, f is as for the Ny(2, 2) mode, equivalent depth 2 = 1.71755 km,

with Hough function
P2+4.122096 P2—4.271794 P%+1.548171 P}
and magnetic tide

—0.119417 P$—0.022731 P2+ 0.023 386 PZ—0.005880 PZ.

The observed lunar elliptic semi-diurnal local time tide for 1.Q.S.Y. years 1964-65 has the
form
{84 P3—17 P8} cos (2t* — 35+ 2k +p + 284°).
Such a magnetic tide is produced by the following numerical combination of modes:

- 2\ <> 2\ < *— .
{—2913 Ny(2, 2) +83 N,(2, 4)} cos (26* — 35+ 2k + p + 284°)

The N,(2, 2) and N,(2, 4) modes differ in sign, as do the corresponding M,(2, 2) and M,(2, 4)
modes. The ratio of the Ny(2, 4) and N,(2, 2) modes is smaller than that for M, and is closer
to the ratio given by the solar than by the lunar semi-diurnal tides. The ratio of coefficients
P2/P% = 17/84 is midway between the ratio for the lunar magnetic tide, namely 108/254 and
that for the solar magnetic tides, 281/2922.
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7. SUMMARY

Hourly mean values of the Earth’s magnetic field from a total of 253707 element-days from
130 magnetic observatories operating during the I.Q.S.Y. years 1964-65 have been analysed
for solar, lunar and lunar elliptic magnetic tides, and their seasonal change. Results for all
tides have been expressed in a way that provides a wealth of material for electrical conduc-
tivity modelling of the Earth’s interior.

The ionospheric dynamo theory of Schuster (19o8), Chapman (1919) and Baker & Martyn
(1952) is found to be adequate in that the amplitudes of the four principal daily harmonics
of the lunar magnetic tide are found to be in reasonable accord with the theory. The wind
velocity is assumed to have a scalar potential of the form P3. For the solar magnetic tide S,
an additional wind velocity potential of the form P? is required. By using coefficients of local
time semi-diurnal terms P3, P2 and diurnal terms P}, P}, the results are interpreted in terms
of the known modal structure of winds in the upper atmosphere.

Any contribution from the direct dynamo action of the ocean has been removed from both
lunar and lunar elliptic tides by using the calculation of Malin (1970). The physical relevance
of the calculation is indicated by the absence of an ocean dynamo component in the seasonal
magnetic tide L(2s—3k). "\

Equator-symmetric sectorial termsin phase-law and partial tidesin L(2s — 2k) and L(3s — 2k — p)
are considered to be associated with harmonics of the 27-day recurrence tendency in magnetic
acitivity. Sectorial local time terms in the solar magnetic tide appear to be associated with the
wind velocity modes (1, —1) and (2, 3). Local time sectorial terms are responsible for the
difference in intensity of the Sy overhead current foci in the Northern and Southern Hemi-’
spheres, and because the terms depend upon local time only, they cannot arise- from the
influence of geographical or topographical features of the Earth. The day-to-day variability
of § is, following the work of Hasegawa (1960), associated with the variability of local time
sectorial terms in the § potential.

Comparison of the results for the solar and lunar magnetic tides with the corresponding
results derived by Malin (1973) for the I.G.Y. years indicates important differences between
the variation of solar and lunar magnetic tides with increasing sunspot number.

The seasonal variation of the lunar magnetic tide is found to be three times greater than that
of the solar magnetic tide. Extremum amplitudes of the lunar magnetic tide occur in early
August and early February, while extremum amplitudes for solar magnetic tides occur in June
and December. There is evidence for a dynamo contribution from the tide K; in the seasonal
variation of the solar magnetic tide.

The lunar elliptic tide L(3s—2k—p) is such that it gives rise to enhanced values of the
principal lunar tide L(2s—2k) at perigee, s—p = 0, the closest approach of the Moon to
the Earth. There are, however, some differences between the lunar and lunar elliptic tides. The
phase of the lunar elliptic tide is in advance of the lunar magnetic tide, and the lunar elliptic
tide diurnal term is greater than the semi-diurnal term. The semi-annual variation of § relative
to S is much smaller than the semi-annual variation of L(2s—2h) relative to L(2s—2h).
It is suggested that some analyses of the semi-annual variation of the lunar magnetic tide
have in fact simply ‘rectified’ the annual or seasonal variation to give it a semi-annual
appearance. Dominant terms in the semi-annual variation of the lunar magnetic tide are
principally zonal, as if associated with variations of a disturbance ring current about the Earth.
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TABLE 8.1 (2). SPHERICAL HARMONIC ANALYSIS OF MAGNETIG PHASE-LAW TIDES L(2s5— 2A) o5,

(Amplitudes in picoteslas; phase angles in degrees.)

internal
et
n j k I o
noj ok r Bimi
1 1 0 27+21 322
111 39+ 14 233
1 1 1 4+ 14 241
1 2 0 31+ 16 186
1 2 1 131+14 88
1 2 1 27+ 14 237
1 2 2 42+ 11 163
1 2 2 20+ 11 32
1 3 0 15+ 15 236
1 3 1 21+ 11 229
1 3 1 23+ 11 62
1 3 2 22+ 11 272
1 3 2 14+ 11 190
1 40 9+12 44
1 4 1 33+ 8 309
1 4 1 12+ 8 311
1 4 2 6+ 8 162
1 4 2 17+ 8 333
2 11 42+ 26 48
2 1 1 61+26 233
2 2 1 52+22 231
2 2 1 82+ 22 53
2 2 2 71420 89
2 2 2 81+20 6
2 3 1 44+ 17 39
2 3 1 36+ 17 184
2 3 2 214+18 291
2 3 2 24+ 18 146
2 3 3 11+15 282
2 3 3 24415 57
2 4 1 18+ 13 54
2 4 1 7+13 187
2 4 2 56+ 14 140
2 4 2 33+ 14 246
2 4 3 46+ 12 22
2 4 3 24+ 12 233
2 5 2 21+ 11 122
2 5 2 11411 32

external

——
11 e
I e
91+ 34 300
33+19 157
38+ 19 63
190+ 21 152
174+ 17 86
47+ 17 319
99+ 13 181
43+ 13 51
21+ 19 270
26+ 13 340
30+ 13 269
63+ 12 225
18+ 12 131
72+13 3
117+ 9 245
44+ 9 50
39+ 9 53
36+ 9 305
219+ 33 167
83+ 33 119
55+26 37
81+26 238
69+ 24 297
54 +24 198
153+ 19 332
86+ 19 77
254+ 20 261
72420 332
159+ 17 3
53+ 17 235
47+ 14 132
77+ 14 182
21416 267
55+ 16 158
41+13 68
63+ 13 33
108+ 13 79
43+13 308

internal
N
n j k I ol
n j k I L
3 2 2 0+ 9 336
3 2 2 4+ 9 207
3 3 2 21+ 9 41
3 3 2 38+ 9 12
3 3 3 28+ 9 241
3 3 3 37+ 9 237
3 4 2 21+ 8 168
3 4 2 17+ 8 200
3 4 3 101+ 8 114
3 4 3 40+ 8 71
3 4 4 4+ 8 T4
3 4 4 34+ 8 21
3 5 2 14+ 6 306
3 5 2 5+ 6 42
3 5 3 13+ 7 269
3 5 3 6+ 7 220
3 5 4 19+ 6 214
3 5 4 17+ 6 192
3 6 3 20+ 6 359
3 6 3 9+ 6 198
4 3 3 14+ 4 183
4 3 3 8+ 4 127
4 4 3 2+ 4 272
4 4 3 12+ 4 280
4 4 4 5+ 4 72
4 4 4 17+ 4 332
4 5 3 8+ 3 333
4 5 3 6+ 3 88
4 5 4 26+ 3 291
4 5 4 2+ 3 178
4 5 5 11+ 3 44
4 5 5 5+ 3 349
4 6 4 7+ 3 22
4 6 4 6+ 3 199

I, A}, cos (k¢ +mt+af ) P
U, B ; cos (kp —mt+ f5,) P; 1L, BE

external
—h
11 e
I Bime
147+ 12 345
42+ 12 74
19+ 10 169
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9+ 10 69
36+ 8 154
25+ 8 279
134+ 9 93
26+ 9 303
108+ 9 203
15+ 9 208
9+ 6 4
4+ 7 103
42+ 8 140
33+ 8 128
37+ 17 1
20+ 7 46
61+ 6 314
17+ 6 311
35+ 5 146
7+ 5 66
10+ 4 192
11+ 4 272
9+ 4 330
6+ 4 196
8+ 3 273
9+ 3 89
42+ 4 272
5+ 4 293
27+ 3 32
6+ 3 253
7+ 3 323
1+ 3 276

11, 4%, cos (k¢ +mt+af,.) Ph;

7
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Ficure 8.1 (a). L(25—2h);,,,. phase-law tide current function; extrema in kiloamperes.
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TABLE 8.1 (b). SPHERICAL HARMONIC ANALYSIS OF MAGNETIC PHASE-LAW TIDE L(35 — 2k —$);on.

(b)

1

3s—2h—p = 0°

270°

—_— e e b e e e e e e e 3OS

PN NMNONNDNDNDNNDNDNNDNDNNN NN

(Amplitudes in picoteslas; phase angles in degrees.)

internal

(_';\
j k I/ ;”ﬂ
1 0 31+16 31
11 47+ 10 64
11 27+ 10 177
2 0 19+ 13 113
2 1 28+ 10 79
2 1 14+ 10 34
2 2 16+ 8 155
2 2 15+ 8 328
3 0 12+ 11 202
3 1 21+ 8 173
3 1 15+ 8 161
3 2 4+ 8 13
3 2 6+ 8 138
4 0 11+ 9 14
4 1 26+ 6 317
4 1 19+ 6 1
4 2 6+ 6 286
4 2 5+ 6 94
11 19+ 17 343
11 29+ 17 270
2 1 26+ 15 188
2 1 4+ 15 82
2 2 42+ 13 206
2 2 32+13 50
3 1 17+ 11 307
3 1 22+ 11 297
3 2 49+ 11 287
3 2 18+ 11 220
3 3 15+ 10 321
3 3 16+ 10 46
4 1 17+ 8 177
4 1 16+ 8 227
4 2 1+10 115
4 2 25+ 10 46
4 3 6+ 8 2
4 3 24+ 8 244
5 2 11+ 8 153
5 2 15+ 8 265

external
—r—
11 k.
11 e
77+23 47
91+13 37
16+ 13 42
36+ 17 195
93+ 12 93
36+12 129
24+ 10 86
16+ 10 332
27+13 332
7+ 10 240
20+ 10 8
23+ 9 194
2+ 9 31
25+ 10 78
33+ 7 274
8+ 7 130
18+ 7 7
20+ 7 199
90+ 21 173
15+ 21 159
60+ 17 318
35+17 259
98+ 15 214
5+ 15 307
30+13 97
40+ 13 16
84+13 284
28+13 16
37+ 11 317
29+ 11 256
37+ 10 207
34+10 231
17+ 11 230
15+ 11 195
6+ 9 96
16+ 9 233
17+ 8 109
9+ 8 336

internal

v N
n j k I ok
nj k r Bl
3 2 2 5+ 5 98
3 2 2 10+ 5 241
3 3 2 5+ 5 171
3 3 2 7 5 342
3 3 3 8+ 4 21
3 3 3 11+ 5 227
3 4 2 6+ 4 195
3 4 2 11+ 4 123
3 4 3 20+ 4 125
3 4 3 10+ 4 47
3 4 4 6+ 4 49
3 4 4 13+ 4 24
3 5 2 3+ 3 334
3 5 2 7+ 3 22
3 5 3 9+ 4 32
3 5 3 6+ 4 322
3 5 4 13+ 3 226
3 5 4 13+ 3 183
3 6 3 3+ 3 347
3 6 3 3+ 3 163
4 3 3 4+ 3 266
4 3 3 6+ 3 154
4 4 3 2+ 3 88
4 4 3 6+ 3 352
4 4 4 7+ 3 24
4 4 4 5+ 3 303
4 5 3 11+ 2 2
4 5 3 4+ 2 100
4 5 4 4+ 2 295
4 5 4 3+ 2 97
4 5 5 4+ 2 108
4 5 5 3+ 2 333
4 6 4 4+ 2 52
4 6 4 3+ 2 104

I, 4}, cos (kp+mt+af,) Pf;

I, B}, cos (kp —mt+ fE,) P¥;

external

—H—
11 e
Ir e
47+ 6 26
15+ 6 16
23+ 5 183
13+ 5 57
26+ 5 80
6+ 5 172
18+ 4 194
11+ 4 242
26+ 5 89
9+ 5 302
23+ 5 226
1+ 5 283
14+ 3 38
15+ 3 67
2+ 4 265
10+ 4 119
4+ 4 18
9+ 4 20
7+ 3 31
2+ 3 163
19+ 3 203
3+ 3 124
3+ 3 38
3+ 3 277
19+ 3 333
4+ 3 129
20+ 2 345
7+ 2 80
5+ 3 261
6+ 3 341
12+ 2 51
1+ 2 298
6+ 2 358
4+ 2 136

11, 4%

jme

IU, B, cos (k¢ —mt+ f3%,

cos (k¢ +mt+ak,.) Pt;

mi

o) P}.

FiGURE 8.1 (b). L(35— 2k — p);ono. Phase-law tide current function; extrema in kiloamperes.
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TABLE 8.2 (a). SPHERICAL HARMONIC ANALYSIS OF L(2s — 44) PHASE-LAW TIDES

(Amplitudes in picoteslas; phase angles in degrees.)

internal external internal external
A ——A— A ——r—

n j k 1 ok, 11 ok nj k 1 ok 1I ke
nj k r - 0y e n j k r Bim i e
1 1 0 101+ 15 308 309+ 21 285 3 2 2" 18+ 6 102 144+ 7 69
1 1 1 31+10 276 42+ 14 224 3 2 2 5+ 5 238 15+ 7 115
1 1 1 8+ 10 321 28+ 14 72 3 3 2 10+ 5 31 17+ 6 76
1 2 0 23+12 269 30+15 265 3 3 2 4+ 35 348 15+ 6 314
1 2 1 33+ 10 215 55+ 12 240 3 3 3 11+ 5 5 31+ 6 17
1 2 1 11+10 75 17+12 256 3 3 3 19+ 5 236 10+ 6 339
1 2 2 23+ 8 160 65+ 10 134 3 4 2 11+ 4 125 18+ 5 119
1 2 2 10+ 8 127 26410 249 3 4 2 8+ 4 29 7+ 5 52
1 3 0 12+ 11 242 9+13 255 3 4 3 6+ 5 301 6+ 5 277
1 3 1 9+ 8 152 59+ 9 154 3 4 3 10+ 5 82 12+ 5 38
1 3 1 16+ 8 251 15+ 9 335 3 4 4 11+ 5 235 38+ 5 178
1 3 2 10+ 8 116 21+ 9 185 3 4 4 12+ 5 100 8+ 5 131
1 3 2 22+ 8 249 15+ 9 306 3 5 2 1+ 3 190 5+ 4 324
1 4 0 13+ 9 64 27+ 10 273 3 5 2 3+ 3 225 2+ 4 311
1 4 1 11+ 6 212 214+ 7 219 3 5 3 4+ 4 237 6+ 5 0
1 4 1 4+ 6 348 14+ 7 259 3 5 3 2+ 4 328 9+ 4 233
1 4 2 11+ 6 334 37+ 7 317 3 5 4 10+ 4 133 4+ 4 176
1 4 2 7+ 6 74 16+ 7 159 3 5 4 5+ 4 269 2+ 4 2

3 6 3 5+ 3 188 16+ 4 135
2 1 1 40+ 10 316 72+ 14 257 3 6 3 1+ 3 342 5+ 4 98
2 1 1 32+ 10 254 29+ 14 79
2 2 1 25+ 9 172 82+ 11 57 4 3 3 6+ 3 136 7+ 3 220
2 2 1 27+ 9 41 39+ 11 307 4 3 3 3+ 3 324 3+ 3 243
2 2 2 36+ 8 152 59+ 10 165 4 4 3 2+ 3 298 6+ 3 2
2 2 2 21+ 8 67 13+ 10 81 4 4 3 7+ 3 138 5+ 3 125
2 3 1 20+ 7 58 17+ 8 261 4 4 4 5+ 3 232 7+ 3 194
2 3 1 15+ 7 262 15+ 8 358 4 4 4 6+ 3 198 3+ 3 312
2 3 2 13+ 7 355 23+ 8 60 4 5 3 1+ 2 263 6+ 2 312
2 3 2 T+ 7 218 13+ 8 6 4 5 3 2+ 2 311 4+ 2 273
2 3 3 24+ 6 0 65+ 7 329 4 5 4 44+ 3 209 9+ 3 233
2 3 3 4+ 6 69 24+ 7 344 4 5 4 2+ 3 212 3+ 3 285
2 4 1 15+ 5 296 37+ 6 73 4 5 5 5+ 2 52 10+ 2 9
2 4 1 5+ 5 243 31+ 6 236 4 5 5 T+ 2 14 3+ 2 286
2 4 2 10+ 6 72 3+ 7 307 4 6 4 1+ 2 158 13+ 2 218
2 4 2 7+ 6 245 7+ 6 150 4 6 4 3+ 2 348 44+ 2 318
> ia il ohe e & L 4, cos (kp+ mt o) PY; TN, AL, cos (ke mt-+ o) Pl
2 5 2 5+ 5 61 15+ 5 37 U, B), cos (k¢ —mt+ ) P}; 1L, B, cos (kj—mi+ f,,) PE.
2 5 2 3+ 5 115 4+ 5 70

t=12h

2s—4h = 270°

Ficure 8.2 (a). L(2s— 4k) phase-law tide current function; extrema in kiloamperes.
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TABLE 8.2 (b). SPHERICAL HARMONIC ANALYSIS OF L(2s—4/) PARTIAL TIDES

(Amplitudes in picoteslas; phase angles in degrees.)

internal external internal external
——t— N e ——Hr
nj ok m oy, v e nj ok 11 W v e
Rk WU g Iv g A O S
110 24+ 15 123 67+ 22 117 3 2 2 16+ 5 280 28+ 6 272
1 1 1 48+ 9 158 84+ 13 190 3 2 2 10+ 5 64 8+ 6 42
1 1 1 16+ 9 67 36+ 13 110 3 3 2 10+ 4 61 5+ 5 229
1 2 0 19+12 74 61+15 45 3 3 2 10+ 4 313 14+ 5 252
1 2 1 32+ 9 230 86+ 11 178 3 3 3 5+ 4 192 - 13+ 5 131
1 2 1 9+ 9 43 23+ 11 9 3 3 3 12+ 4 202 2+ 5 19
1 2 2 20+ 7 213 40+ 9 260 3 4 2 11+ 4 206 4+ 4 26
1 2 2 5+ 8 44 24+ 9 148 3 4 2 24 4 179 12+ 4 34
1 3 0 17+ 11 360 28+ 13 247 3 4 3 9+ 4 53 9+ 5 45
1 3 1 10+ 8 210 32+ 9 237 3 4 3 6+ 4 42 13+ 5 295
1 3 1 5+ 8 318 13+ 9 305 3 4 4 2+ 4 340 20+ 4 278
1 3 2 11+ 7 2 21+ 9 66 3 4 4 12+ 4 308 3+ 4 173
1 3 2 10+ 7 150 17+ 9 15 3 5 2 11+ 3 37 14+ 3 29
1 4 0 10+ 8 194 22+ 9 203 3 5 2 1+ 3 53 7+ 3 321
1 4 1 17+ 6 150 43+ 6 164 3 5 3 7+ 3 324 6+ 4 317
1 4 1 15+ 6 336 13+ 6 286 3 5 3 4+ 3 30 10+ 4 105
1 4 2 16+ 6 102 16+ 7 115 3 5 4 7+ 3 245 5+ 3 105
1 4 2 11+ 6 294 18+ 7 296 3 5 4 6+ 3 151 5+ 3 16
3 6 3 5+ 3 125 3+ 3 168
2 1 1 37+ 9 98 112+ 12 87 3 6 3 4+ 3 276 5+ 3 283
2 1 1 8+ 9 214 14+ 12 27
2 2 1 19+ 8 241 44+ 9 233 4 3 3 5+ 3 144 9+ 3 152
2 2 1 9+ 8 322 24+ 9 293 4 3 3 6+ 3 90 5+ 3 53
2 2 2 22+ 7 290 27+ 9 325 4 4 3 1+ 3 347 2+ 3 313
2 2 2 3+ 7 319 10+ 9 5 4 4 3 2+ 3 278 3+ 3 175
2 3 1 6+ 6 23 12+ 7 209 4 4 4 44+ 3 307 8+ 3 251
2 3 1 7+ 6 354 5+ 7 332 4 4 4 3+ 3 191 2+ 3 263
2 3 2 16+ 6 137 33+ 7 162 4 5 3 44 2 53 5+ 2 51
2 3 2 11+ 6 328 27+ 7 277 4 5 3 44+ 2 57 8+ 2 24
2 3 3 21+ 5 56 22+ 6 58 4 5 4 44 2 294 8+ 3 269
2 3 3 4+ 5 215 6+ 6 148 4 5 4 1+ 2 125 5+ 3 96
2 4 1 16+ 4 260 26+ 5 267 4 5 5 24 2 235 3+ 2 110
2 4 1 11+ 4 306 30+ 5 348 4 5 5 9+ 2 264 1+ 2 264
2 4 2 1+ 5 54 5+ 6 77 4 6 4 1+ 2 148 3+ 2 109
2 4 2 14+ 5 79 15+ 6 102 4 6 4 1+ 2 201 1+ 2 333
" 5
3 i g ij:: . ;6‘53 lgi 2 223’ 111, A5, cos (kf+ m't+af, ) Pl IV, AL, cos (k+m't+ak,,) P;
2 5 2 4% 4 122 11 4 100 11T, B, cos (k¢ —m't+BL,.) P§5 IV’ Bl cos (kf—m't+ fh.) P
2 5 2 8+ 4 233 8+ 4 338

(b)

2s—4h = 0°

= 270°

2s—4h

Ficure 8.2 (). L(25s— 4h) partial tide current function; extrema in kiloamperes.
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TABLE 8.3 (4). SPHERICAL HARMONIC ANALYSIS OF L (25— 3/) PHASE-LAW TIDES

e e e e e e e e e e e N

DORD DO DO DD DO DO DO hO DO DO DO b0 DO DO DO B DO O bO

(Amplitudes in picoteslas; phase angles in degrees.)

internal

e
J kK 1 ak,
J ok r Bl
1 0 101+ 17 148
1 1 77+ 11 345
11 T+ 11 267
2 0 44415 230
2 1 15+ 11 193
2 1 7+ 11 32
2 2 2+ 9 292
2 2 24+ 9 248
3 ¢ 8+ 12 357
3 1 18+ 10 86
3 1 20+ 10 350
3 2 19+ 9 335
3 2 29+ 9 73
4 0 27+ 11 76
4 1 12+ 7 171
4 1 10+ 7 79
4 2 6+ 7 153
4 2 T+ 7 188
11 99+ 15 268
11 25+ 15 0
2 1 4+12 79
2 1 37+13 209
2 2 112+ 12 148
2 2 17+ 12 75
3 1 17+ 10 325
3 1 40+ 10 16
3 2 8+ 10 311
3 2 15+ 10 264
3 3 16+ 9 134
3 3 19+ 9 108
4 1 6+ 7 106
4 1 20+ 7 254
4 2 27+ 8 169
4 2 1+ 8 51
4 3 21+ 7 260
4 3 7+ 7 71
5 2 13+ 6 340
5 2 14+ 6 32

external
At
11 o e
I Bime
216 +27 153
218+ 15 317
49+ 15 332
132+ 18 209
24 +13 358
33+13 10
16+ 11 46
34+ 11 143
22+15 310
62+ 11 85
30+ 11 94
11+10 106
29+ 10 356
41+12 340
19+ 8 30
38+ 8 71
2+ 8 72
40+ 8 165
203 + 19 235
16+ 19 283
93+ 15 305
40+ 15 50
268 + 14 148
34+14 210
48+ 11 11
30+ 11 328
35+12 29
21+12 26
26+ 10 117
23+ 10 125
20+ 8 247
23+ 8 345
67+ 9 162
2+ 9 287
23+ 8 257
7+ 8 67
26+ 7 272
9+ 7 83

WWWWwWWowowewwewowwaowewwwwww 33

[T N N N N NI N N N N N I N

internal
—
J k I A
A S R
2 2 29+ 7 67
2 2 10+ 7 261
3 2 11+ 6 258
3 2 7+ 6 303
3 3 55+ 6 356
3 3 5+ 6 79
4 2 7+ 5 163
4 2 3+ 5 348
4 3 20+ 5 214
4 3 3+ 5 301
4 4 24+ 5 208
4 4 11+ 5 161
5 2 2+ 4 355
5 2 3+ 4 62
5 3 25+ 5 4
5 3 13+ 5 37
5 4 3+ 4 25
5 4 5+ 4 240
6 3 5+ 4 115
6 3 11+ 4 193
3 3 7+ 3 321
3 3 6+ 3 280
4 3 5+ 3 257
4 3 4+ 3 67
4 4 7+ 3 197
4 4 8+ 3 251
5 3 4+ 2 70
5 3 4+ 2 196
5 4 10+ 3 29
5 4 12+ 3 59
5 5 5+ 2 113
5 5 1+ 2 283
6 4 9+ 2 191
6 4 4+ 2 276
s A i cos (ke + mt+ak,) PE;

'y By cos (kp — mt+ f,) Pf;

external

f—_A-—_\
11 ok
I Bine
77+ 8 56
27+ 8 266
21+ 7 192
14+ 7 30
122+ 7 334
19+ 7 5
7+ 6 209
19+ 6 251
16+ 6 238
12+ 6 199
23+ 6 292
8+ 6 168
15+ 4 216
17+ 4 57
41+ 5 333
14+ 5 88
25+ 4 115
6+ 4 268
19+ 4 40
4+ 4 197
17+ 4 266
6+ 4 249
2+ 4 162
7+ 4 74
11+ 4 148
T+ 4 34
5+ 3 70
6+ 3 202
3+ 3 359
3+ 3 332
9+ 3 90
5+ 3 171
10+ 2 190
3+ 2 106

11, 4%, cos (ke +mi+ak,) Pl

11, B}

jme

cos (k¢ —mt+ f3,.) PE.

Ficure 8.3 (a). L(2s— 3k) phase-law tide current function; extrema in kiloamperes.
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TABLE 8.3 (). SPHERICAL HARMONIC ANALYSIS OF L(2s— 3/) PARTIAL TIDES

(Amplitudes in picoteslas; phase angles in degrees.)

internal external internal external
——H— P ——Hr— ——Hr—
nj k 111 ey v e nJj k 111 b v oo
nj k I B v ¥ e nj k I B v B,
110 44+ 14 59 35+ 21 66 3 2 2 6+ 5 333 22+ 6 283
111 12+ 9 293 13+12 308 3 2 2 16+ 3 332 8+ 6 345
11 1 23+ 9 320 16+ 12 21 3 3 2 3+ 4 85 8+ 5 57
1 2 0 21+12 236 14+ 15 179 3 3 2 2+ 4 89 9+ 5 210
1 2 1 11+ 9 286 44+ 11 230 3 3 3 12+ 4 292 24+ 5 262
121 10+ 9 97 25+ 11 6 3 3 3 9+ 4 167 8+ 5 94
1 2 2 13+ 8 288 15+ 9 306 3 4 2 8+ 4 237 2+ 4 94
12 2 9+ 8 160 9+ 9 312 3 4 2 9+ 4 258 11+ 4 4
1 30 11410 199 10+ 12 228 3 4 3 13+ 4 58 15+ 5 37
1 3 1 12+ 8 268 38+ 9 251 3 4 3 8+ 4 52 3+ 5 251
1 3 1 8+ 8 34 33+ 9 121 3 4 4 2+ 4 209 4+ 4 243
1 3 2 9+ 7 256 17+ 8 353 3 4 4 10+ 4 247 4+ 4 275
13 2 9+ 7 179 22+ 8 230 3 5 2 9+ 3 86 6+ 3 182
1 4 0 3+ 8 185 47+ 9 207 3 5 2 4+ 3 232 19+ 3 246
1 4 1 14+ 6 184 23+ 6 160 3 5 3 3+ 4 213 T+ 4 121
1 4 1 5+ 6 76 3+ 6 286 3 5 3 2+ 4 165 13+ 4 89
1 4 2 13+ 5 127 22+ 6 172 3 5 4 2+ 3 81 2+ 3 9
1 4 2 2+ 5 99 21+ 6 154 3 5 4 4+ 3 21 5+ 3 28
3 6 3 5+ 3 228 10+ 3 284
2 1 1 36+ 8 209 17+ 11 164 3 6 3 2+ 3 132 2+ 3 176
2 1 1 7+ 8 58 28+ 11 307
2 2 1 23+ 7 355 12+ 8 262 4 3 3 8+ 3 164 9+ 3 130
2 2 1 4+ 7 332 26+ 8 50 4 3 3 6+ 3 22 2+ 3 307
2 2 2 7+ 6 203 37+ 8 80 4 4 3 6+ 3 10 1+ 3 342
2 2 2 8+ 6 159 28+ 8 40 4 4 3 8+ 3 186 6+ 3 131
2 3 1 20+ 5 202 22+ 6 223 4 4 4 T+ 3 203 11+ 3 152
2 3 1 11+ 5 10 26+ 6 308 4 4 4 2+ 3 337 1+ 3 60
2 3 2 24+ 6 151 42+ 7 177 4 5 3 5+ 2 111 4+ 2 68
2 3 2 6+ 6 293 35+ 7 224 4 5 3 3+ 2 348 5+ 2 305
2 3 3 5+ 5 121 16+ 6 169 4 5 4 3+ 2 308 8+ 3 282
2 3 3 16+ 5 173 16+ 6 95 4 5 4 4+ 2 265 5+ 3 242
2 4 1 5+ 4 5 22+ 4 23 4 5 5 3+ 2 10 4+ 2 343
2 4 1 15+ 4 212 16+ 4 296 4 5 5 3+ 2 187 1+ 2 286
2 4 2 4+ 5 295 6+ 5 74 4 6 4 2+ 2 212 1+ 2 166
2 4 2 5+ 5 245 11+ 5 16 4 6 4 6+ 2 100 6+ 2 64
543 di4 w0 is4 o UL, Ay 08 (k6 mth ) Pl TV, A cos (kg it ) s
2 5 2 T+ 4 93 17+ 4 165 1T, B, cos (kp—m't+Bhy) Pf;  IV', Bl cos (kp—m't+fB},.0) P}
2 5 2 4+ 4 187 8+ 4 227

t=12h

F1curE 8.3 (b). L(2s— 3k) partial tide current function; extrema in kiloamperes.
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TABLE 8.4 (¢). SPHERICAL HARMONIC ANALYSIS OF L(25 — 2h);550.40c. PHASE-LAW TIDES

(Amplitudes in picoteslas; phase angles in degrees.)

internal external internal external
e ——t— S t— e
n j k 1 ok 11 o n j k 1 ok 11 o e
n j k I i Y % n j k r B r Pine
1 1 0 27421 322 91+34 300 3 2 2 10+ 9 336 147412 345
11 1 39+14 233 33+19 157 3 2 2 44+ 9 207 42412 74
111 4+14 241 38+19 63 33 2 20+ 9 41 19410 169
1 2 0 31+16 186 199+21 152 3 3 2 38+ 9 12 43110 192
12 1 131414 88 174+ 17 86 3 3 3 28+ 9 241 48410 120
12 1 27+14 237 47417 319 3 3 3 37+ 9 237 9410 69
1 2 2  42+11 163 99+13 181 3 4 2 20+ 8 168 36+ 8 154
122 20+11 32 43+13 51 3 4 2 17+ 8 200 25+ 8 279
1 3 0 15415 236  21+19 270 3 4 3 101+ 8 114 134+ 9 93
13 1 20411 229  23+13 340 3 4 3 40+ 8 71 2+ 9 303
13 1 23x11 €2 30+13 239 3 4 4 4+ 8 74 108+ 9 203
1 3 2  22+11 272 63+12 225 3 4 4 344+ 8 21 15+ 9 208
1 3 2  14+11 190  18+12 131 3 5 2 14+ 6 306 9+ 6 4
1 40 9412 4 72+13 3 3 5 2 5+ 6 42 4+ 7 103
1 4 1 33+ 8 309 117+ 9 245 3 5 3 13+ 7 269 42+ 8 140
1 4 1 12+ 8 311 4+ 9 50 3 5 3 6+ 7 220 33+ 8 128
14 2 6+ 8 162 394 9 53 3 5 4 19+ 6 214 37+ 7 1
1 4 2 17+8 333 36+ 9 305 3 5 4 17+ 6 192 20+ 7 46
3 6 3 20+ 6 359 61+ 6 314
2 1 1 88+40 148 482446 165 3 6 3 9+ 6 198 17+ 6 31t
2 1 1 165+40 253 123446 94
2 2 1 78432 116 92434 351 4 3 3 14+ 4 183 35+ 5 146
2 2 1 60+32 48 40+35 274 4 3 3 8+ 4 127 7+ 5 66
2 2 2 58432 186 170435 339 4 3 4 2+ 4 212 10+ 4 192
2 2 2 47431 336  29+35 26 4 4 3 12+ 4 280 11+ 4 272
2 3 1 34+24 270  88+23 8 4 4 4 5+ 4 72 9+ 4 330
2 3 1 37+24 129 5426 1 4 4 4 17+ 4 332 6+ 4 196
2 3 2 227426 297 280428 240 4 5 3 8+ 3 333 8+ 3 273
2 3 2 49426 91 38+28 254 4 5 3 6+ 3 88 9+ 3 89
2 3 3 20423 234 165+25 24 4 5 4 26+ 3 201 42+ 4 272
2 3 3 37+23 14 46+25 177 4 5 4 2+ 3 178 5+ 4 293
2 4 1 48+18 117 51419 210 4 5 5 11+ 3 4 27+ 3 32
2 4 1 70+18 248 100+19 115 4 5 5 5+ 3 349 6+ 3 253
2 4 2 42420 149  48+22 310 4 6 4 7+ 3 22 7+ 3 323
2 4 2 59+20 252 36+21 99 4 6 4 6+ 3 199 1+ 3 276
g 4 g g?i:; 2§1 g‘;iig gig 1, A%, cos (ke +mt+ o ",,,JP,"; 1N, A%, cos (kf+mt+ak,,) Pt
2 5 2 23+16 193 69+17 79 U, B}, cos (kp—mt+ [} P; 11, BY,, cos (k¢p—mt+ B%,.) PE.
2 5 2 56+16 7 29417 239

FiGURE 8.4 (a). L(2s5— 2k)ion0. 100, Phase-law tide current function; extrema in kiloamperes.
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TABLE 8.4 (b). SPHERICAL HARMONIC ANALYSIS OF L(25—2A)010.400. PARTIAL TIDES
(Amplitudes in picoteslas; phase angles in degrees.)

internal external internal external
——— —A—— At At
n j k 111 - v e n j k 111 ok v ok e
nj ok r IV B nj k nr By IV R
i 10 70+ 12 168 200+18 167 2,2 2 14+ 4 10 22+ 5 13
1 1 1 34+ 8 172 49+ 11 185 3 3 2 8+ 4 8 18+ 5 23
1 1 1 13+ 8 253 5+ 11 38 3 3 2 T+ 4 164 10+ 5 50
1 2 0 38+ 11 127 30+ 14 100 3 3 2 2+ 4 232 10+ 5 235
1 2 1 32+ 8 263 45+ 10 251 3 3 3 3+ 4 333 25+ 5 271
1 2 1 13+ 8 83 62+ 10 233 3 3 3 3+ 4 25 17+ 5 264
1 2 2 16+ 7 268 21+ 8 275 3 4 2 4+ 3 79 6+ 4 176
1 2 2 5+ 7 232 15+ 8 353 3 4 9 3+ 3 197 2+ 4 55
1 3 0 23+ 9 264 27+ 10 323 3 4 3 3+ 4 9 20+ 4 130
1 3 1 9+ 7 15 8+ 8 288 3 4 3 7+ 4 288 7+ 4 223
1 3 1 5+ 7 273 43+ 8 31 3 4 4 3+ 4 234 8+ 4 342
1 3 2 27+ 6 31 36+ 7 74 3 4 4 8+ 4 151 T+ 4 31
1 3 2 10+ 6 320 8+ 7 317 3 5 2 4+ 3 86 8+ 3 40
1 4 0 22+ 7 30 30+ 8 303 3 5 2 5+ 3 328 6+ 3 297
1 4 1 20+ 5 167 73+ 5 132 3 5 3 4+ 3 219 10+ 4 261
1 4 1 10+ 5 47 26+ 5 186 3 5 3 5+ 3 94 3+ 4 19
1 4 2 20+ 5 221 42+ 6 244 3 5 4 24+ 3 125 9+ 3 88
1 4 2 11+ 5 172 7+ 6 180 3 5 4 2+ 3 230 13+ 3 142
3 6 3 4+ 3 83 12+ 3 53
2 1 1 23+ 7 204 61+10 184 3 6 3 44+ 3 164 3+ 3 206
2 1 1 14+ 8 262 22+ 10 179
2 2 1 14+ 6 33 18+ 8 349 4 3 3 4+ 3 328 2+ 3 328
2 2 1 1+ 6 158 8+ 8 324 4 3 3 9+ 3 17 3+ 3 329
2 2 2 30+ 6 55 46+ 8 53 4 4 3 24+ 2 180 9+ 3 284
2 2 2 5+ 6 27 6+ 8 242 4 4 3 2+ 2 92 7+ 3 91
2 3 1 8+ 5 254 32+ 6 335 4 4 4 8+ 3 193 15+ 3 142
2 3 1 6+ 5 340 9+ O 245 4 4 4 6+ 3 207 4+ 3 109
2 3 2 3+ 5 200 3+ 6 96 4 5 3 3+ 2 164 8+ 2 143
2 3 2 6+ 5 243 7+ 6 153 4 5 3 24+ 2 146 3+ 2 306
2 3 3 9+ 5 193 6+ 6 336 4 5 4 7+ 2 46 11+ 3 346
2 3 3 3+ 5 52 9+ 6 247 4 5 4 2+ 2 59 4+ 3 256
2 4 1 5+ 4 53 19+ 4 137 4 5 5 2+ 2 17 10+ 2 224
2 4 1 12+ 4 296 25+ 4 349 4 5 5 2+ 2 167 3+ 2 33
2 4 2 7+ 4 62 25+ 5 90 4 6 4 3+ 2 203 1+ 2 201
2 4 2 8+ 4 239 16+ 5 358 4 6 4 2+ 2 355 3+ 2 346
243 oc4 o x4 10 L, AL cos (bt mftt aby ) Pls IV, Ay cos (ki +mit+ o) P
2 5 2 5+ 3 197 11+ 4 268 T, Bj, cos (k¢ —m't+ i) Pfs IV, Bf,. cos (kg —m't+f3%,.) P}
2 5 2 6+ 3 80 18+ 4 249

(b)

25— 2h = 0°

270°

25— 2h

F1GURE 8.4 (b). L(25— 2h)op0.400. Partial tide current function; extrema in kiloamperes.
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TABLE 8.5 (¢). SPHERICAL HARMONIC ANALYSIS OF L(2s —/) PHASE-LAW TIDES

(Amplitudes in picoteslas; phase angles in degrees.)

internal external internal external
———r— P At At
n j k 1 ok 11 ok, nj k I afy 11 Whme
noj k T B o Blone n j k 1 B 1 e
110 85+ 24 131 162+ 35 92 3 2 2 19+ 7 290 57+ 9 277
1 1 1 94+ 15 205  212+21 228 3 2 2 T+ 17 72 50+ 9 113
11 1 25+ 15 281 38+21 296 3 3 2 12+ 6 301 24+ 8 343
120 70+ 21 153 41+24 112 3 3 2 15+ 6 49 21+ 8 287
1 2 1 53+ 15 48 41+ 18 319 3 3 3 44+ 6 230 8+ 7 226
1 2 1 8+15 86 12+ 18 108 3 3 3 3+ 6 316 -+ 16+ 7 290
1 2 2 23+12 162 72+ 14 143 3 4 2 17+ 5 135 38+ 6 144
1 2 2 11+12 184 T+ 14 188 3 4 2 12+ 5 223 7+ 6 35
1 3 0 32+ 17 113 26+ 22 168 3 4 3 34+ 6 55 61+ 7 45
1 3 1 32+13 297 43+ 15 250 3 4 3 19+ 6 91 15+ 7 36
1 3 1 29+ 13 8 11+15 67 3 4 4 6+ 6 196 34+ 6 168
1 3 2 35+12 222 25+13 184 3 4 4 8+ 6 347 7+ 6 349
1 3 2 18+12 334 11+13 340 3 5 2 1+ 4 342 18+ 5 8
1 4 0 251+ 14 220 50+ 15 298 3 5 2 1+ 4 255 9+ 5 214
1 4 1 6+ 9 197 34+11 219 3 5 3 20+ 5 245 26+ 6 205
1 4 1 11+ 9 299 3+11 3 3 5 3 9+ 5 293 5+ 6 270
1 4 2 7+ 9 126 40+ 10 313 3 5 4 10+ 5 161 7+ 5 7
1 4 2 9+ 9 138 13+10 306 3 5 4 7+ 4 192 13+ 5 172
3 6 3 T+ 4 15 19+ 5 268
2 1 1 39+ 14 184 111+19 106 3 6 3 4+ 4 269 5+ 5 152
2 11 22+ 14 20 38+ 18 195
2 2 1 6+13 97 95+ 15 204 4 3 3 11+ 3 134 25+ 4 109
2 2 1 9+13 324 34+15 339 4 3 3 6+ 3 175 2+ 4 103
2 2 2 99+ 11 19 151+13 26 4 4 3 6+ 3 321 4+ 3 353
2 2 2 21+ 11 84 35+ 13 308 4 4 3 7+ 3 324 4+ 3 325
2 3 1 34+10 282 59+ 11 309 4 4 4 T+ 3 94 5+ 3 81
2 31 13410 152 15+ 11 96 4 4 4 13+ 3 9 0+ 3 108
2 3 2 39+ 10 211 73+ 11 218 4 5 3 3+ 2 335 9+ 3 284
2 3 2 13+ 10 346 21+11 75 4 5 3 6+ 2 136 1+ 3 129
2 3 3 18+ 9 22 57+ 10 338 4 5 4 204+ 3 247 32+ 3 224
2 3 3 33+ 9 217 30+ 10 319 4 5 4 5+ 3 161 4+ 3 338
2 4 1 16+ 7 239 36+ 8 203 4 5 5 54+ 2 333 9+ 2 352
2 4 1 114+ 7 60 13+ 8 23 4 5 5 T+ 2 359 5+ 2 251
2 4 2 24+ 8 40 54+ 9 30 4 6 4 7+ 2 55 9+ 2 19
2 4 2 13+ 8 178 7+ 9 274 4 6 4 6+ 2 213 5+ 2 210
2 4 3 10+ 7 44 22+ 7 42
92 4 3 19; 6 293 18; 7 210 I, 4, cos (k¢p+mt+af, ) Pr; 11, AL, cos (kd+mi+ak,.) P¥;
2 5 2 16+ 6 81 29+ 7 68 U, B}, cos (k¢ ~mt+fE,) Pf; 1T, Bf,, cos (kp—mt+ fB%,) PE.
2 5 2 14+ 6 238 14+ 7 278

Ficure 8.5 (a). L(2s—h) phase-law tide current function; extrema in kiloamperes.
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TABLE 8.5 (b). SPHERICAL HARMONIC ANALYSIS OF L(2s— /) PARTIAL TIDES

(Amplitudes in picoteslas; phase angles in degrees.)

internal external internal external
——r— ———H At ——r—
nj k 111 Aoy v ok e nj k I ok v ok e
nj k I Bl v B e nj k Ir B v Biwe
1 1 0 30+16 108  49+32 28 3 2 2 6+ 5 63 1+ 6 35
11 1 34+11 211 144+16 191 3 22 13+5 279 6+ 6 217
11 1 14+11 122 19+16 179 3 3 2 7+ 5 280 12+ 6 328
1 2 0  47+14 62  112+22 18 3 3 2 9+ 5 78 10+ 6 357
1 2 1 28+11 268 101+14 296 3 3 3 7+ 5 39 9+ 6 352
1 2 1 18+11 278  30+14 298 3 3 3 7+ 5 284 5+ 6 212
12 2 5+ 9 58  47+11 324 3 4 2 7+ 4 162 23+ 5 142
1 2 2 20+9 295 25+11 226 3 4 2 9+ 4 252 7+ 5 222
1 83 0 22+12 295 34+19 165 3 4 3 8+ 4 66 22+ 5 33
1 3 1 23+10 66  66+11 91 3 4 3 6+ 4 18 7+ 5 11
1 3 1 2+10 37  24+11 293 3 4 4 11+ 4 275 4+ 5 239
1 3 2 4+ 9 336 10+10 123 3 4 4 7+ 4 103 10+ 5 323
1 3 2 2+ 9 96 12+10 48 3 5 2 5+ 3 247 14+ 4 283
1 4 0 11+12 164 55+12 307 3 5 2 3+ 3 93 T+ 4 140
1 4 1 17+ 7 197 24+ 8 295 3 5 3 5+ 4 287 13+ 4 149
1 4 1 19+ 7 242 37+ 8 336 3 5 3 3+ 4 182 3+ 4 15
1 4 2 17+ 7 258 29+ 8 223 3 5 4 9+ 3 77 12+ 4 5
1 4 2 12+ 7 29 9+ 8 150 3 5 4 5+ 3 347 5+ 4 131
3 6 3 4+ 3 11 5+ 3 307
2 1 1 22+ 9 257 32+12 350 3 6 3 1+ 3 101 6+ 3 45
2 11 16+ 9 80 7+12 271
2 2 1 35+ 8 64 37+ 9 79 4 3 3 5+ 3 13 4+ 4 240
2 2 1 13+ 8 274 20+ 9 326 4 3 3 7+ 3 214 3+ 4 126
2 2 2 8+ 7 43 42+ 9 97 4 4 3 3+ 3 210 4+ 3 46
2 2 2 11+ 7 123 21+ 9 312 4 4 3 3+ 3 21 6+ 4 167
2 3 1 17+ 6 292 27+ 7 290 4 4 4 8+ 3 202 9+ 3 205
2 3 1 16+ 6 219 20+ 7 227 4 4 4 5+ 3 299 6+ 3 32
2 3 2 10+ 6 284 28+ 7 263 4 5 3 5+ 2 3 5+ 3 303
2 3 2 11+ 6 319 17+ 7 138 4 5 3 3+ 2 140 4+ 3 24
2 3 3 9+ 5 9 15+ 6 110 4 5 4 10+ 3 273 14+ 3 219
2 33 14+ 5 188 14+ 6 25 4 5 4 5+ 3 146 6+ 3 173
2 4 1 15+ 4 126 30+ 5 105 4 5 5 2+ 2 8 8+ 3 26
2 4 1 14+ 4 88 11+ 5 174 4 5 5 4+ 2 41 1+ 2 82
2 4 2 4+ 5 144  15% 6 319 4 6 4 4+ 2 110 1+ 2 262
2 4 2 3+ 5 203 11+ 6 6 4 6 4 5+ 2 41 T+ 2 23
2 4 3 9+ 4 161 10+ 5 73
2 4 3 8+ 4 2 11+ 5 194 11, A}, cos (kp+m't+af,) Pf; 1V, 4}, cos (kd+m't+af,.) P
3 g g fi: g;g 13:? 3:"3 11T, B}, cos (k¢ —m't+ fls) PEs IV, B, cos (kp—m't+ f3y,) PE.

Ficure 8.5 (b). L(25—h) partial tide current function; extrema in kiloamperes.

6 Vol. 303. A
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TABLE 8.6 (4). SPHERICAL HARMONIC ANALYSIS OF L(2s5) PHASE-LAW TIDES

(Amplitudes in picoteslas; phase angles in degrees.)

internal external internal external
N ——tr— —A— N
nj k I ok 11 ok e nj k 1 of 1I ok
n j k I Bim 1 Bione nj k I B I e
1 1 0 64+ 18 126 86+ 28 149 3 2 2 18+ 6 131 244+ 7 8
11 1 38+ 13 82 127+ 18 62 3 2 2 18+ 6 223 17+ 7 118
1 1 1 23+ 13 347 72+ 18 324 3 3 2 17+ 5 278 28+ 6 212
1 2 0 12+ 16 22 25+ 21 88 3 3 2 12+ 5 70 14+ 6 309
12 1 52+ 13 46 87+15 32 3 3 3 36+ 5 125 88+ 6 87
1 2 1 19+13 190 10+ 15 271 3 3 3 13+ 5 293 20+ 6 138
1 2 2 23+ 10 246 51413 213 3 4 2 13+ 4 101 5+ 5 68
1 2 2 12+ 10 135 10+ 13 290 3 4 2 T+ 4 359 5+ 5 192
1 3 0 18+ 14 140 13+ 16 184 3 4 3 26+ 5 60 31+ 5 78
1 3 1 15+ 10 181 37+ 12 26 3 4 3 10+ 5 142 13+ 5 335
1 3 1 26+ 10 53 25+ 12 304 3 4 4 12+ 5 307 33+ 5 175
1 3 2 10+ 10 239 47+ 12 219 3 4 4 22+ 5 52 14+ 5 270
1 3 2 2410 270 27+ 12 132 3 5 2 10+ 3 323 12+ 4 303
1 4 0 11+10 197 12+12 29 3 5 2 7+ 3 149 T+ 4 105
1 4 1 T+ 7 18 40+ 8 257 3 5 3 8+ 4 108 19+ 4 59
1 4 1 174+ 7 271 14+ 8 301 3 5 3 6+ 4 276 13+ 4 214
1 4 2 2+ 8 316 29+ 9 27 3 5 4 10+ 4 198 17+ 4 327
1 4 2 13+ 8 309 24+ 9 19 3 5 4 11+ 4 226 11+ 4 125
3 6 3 8+ 3 287 22+ 3 249
2 1 1 19412 315 43+ 15 171 3 6 3 24+ 3 243 124+ 3 15
2 11 15+12 253 40+ 16 119
2 2 1 9410 126 8412 319 4 3 3 2+ 3 232 T+ 4 20
2 2 1 16+ 10 157 40+ 12 287 4 3 3 13+ 3 203 8+ 4 138
2 2 2 43+ 10 262 136+ 11 259 4 4 3 6+ 3 24 9+ 3 8
2 2 2 23+ 10 15 15+ 11 230 4 4 3 10+ 3 20 10+ 3 351
2 3 1 14+ 8 290 16+ 9 283 4 4 4 11+ 3 338 224+ 4 295
2 3 1 5+ 8 78 13+ 9 153 4 4 4 2+ 3 67 24+ 4 245
2 3 2 33+ 8 257 34+ 9 238 4 5 3 44+ 2 335 7+ 2 18
2 3 2 16+ 8 179 12+ 9 182 4 5 3 2+ 2 60 54+ 2 110
2 3 3 20+ 7 76 63+ 8 21 4 5 4 12+ 3 248 16+ 3 261
2 3 3 15+ 7 56 10+ 8 314 4 5 4 7+ 3 184 44+ 3 133
2 4 1 7+ 6 9 15+ 7 227 4 5 5 1+ 2 134 13+ 3 330
2 4 1 11+ 6 271 7+ 7 214 4 5 5 4+ 2 14 2+ 3 94
2 4 2 11+ 7 159 30+ 7 209 4 6 4 2+ 2 21 3+ 2 282
2 4 2 5+ 7 323 14+ 7 232 4 6 4 1+ 2 319 24 2 261
2 4 3 4+ 6 303 13+ 6 135 LAt N "
2 4 3 19+ 6 223 8+ 6 173 » A cos (kG +mi+ag ) Ps 1L Af,, cos (kp+mt+af,) Py
2 5 2 16+ 5 122 32+ 6 62 U, B, cos (k¢ —mt+ f5,) PF; 11, BY,, cos (k¢ —mt+ fE,.) PE.
2 5 2 9+ 5 154 10+ 6 137

FIGURE 8.6 (a). L(2s) phase-law tide current function; extrema in kiloamperes.
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TABLE 8.6 (5). SPHERICAL HARMONIC ANALYSIS OF L(2s) PARTIAL TIDES

(Amplitudes in picoteslas; phase angles in degrees.)

internal external internal external
—r— ——A—— A PR —
nj k I Aoy v af v nj & 111 ko v abe
nj k IIr B v Bhve n j k IIr Bl v’ Blwe
110 56+ 16 146 113+ 25 166 3 2 2 20+ 5 170 25+ 7 176
1 1 1 39+12 335 140 + 17 333 3 2 2 19+ 5 189 20+ 7 111
1 11 33+12 177 T+17 109 3 3 2 12+ 5 351 13+ 6 327
1 2 0 16+ 15 280 32+18 353 3 3 2 9+ 5 54 8+ 6 200
1 2 1 52+ 12 325 121+ 14 286 3 3 3 18+ 5 135 42+ 6 85
1 2 1 10+12 260 47+ 14 201 3 3 3 7+ 5 171 15+ 6 137
1 2 2 10+ 9 226 46+ 11 8 3 4 2 8+ 4 173 17+ 5 149
1 2 2 37+ 9 235 22+ 11 283 3 4 2 4+ 4 192 6+ 5 49
1 3 0 43+12 10 31+15 331 3 4 3 9+ 5 78 12+ 5 63
1 3 1 3+10 254 35+ 11 323 3 4 3 8+ 5 277 15+ 5 338
1 3 1 20+ 9 39 18+ 11 1 3 4 4 8+ 5 354 11+ 5 157
1 3 2 37+ 9 48 13+ 11 215 3 4 4 10+ 5 65 7+ 5 264
1 3 2 38+ 9 67 T+11 213 3 5 2 9+ 3 0 25+ 4 354
1 40 29410 173 11+11 322 3 5 2 5+ 3 15 8+ 4 341
1 4 1 6+ 7 48 24+ 8 293 3 5 3 6+ 4 330 4+ 4 182
1 4 1 18+ 7 180 25+ 8 85 3 5 3 1+ 4 240 4+ 4 175
1 4 2 23+ 7 231 18+ 8 313 3 5 4 11+ 3 146 6+ 4 87
1 4 2 17+ 7 240 9+ 8 231 3 5 4 3+ 3 242 3+ 4 90
3 6 3 1+ 3 70 9+ 3 302
2 1 1 56+ 10 318 83+13 299 3 6 3 3+ 3 56 3+ 3 100
2 1 1 13+ 10 318 35+ 13 157
2 2 1 12+ 9 280 48+ 10 303 4 3 3 2+ 4 160 6+ 4 137
2 2 1 17+ 9 170 20+ 10 258 4 3 3 3+ 4 130 3+ 4 347
2 2 2 15+ 8 261 71+10 249 4 4 3 3+ 3 251 2+ 4 117
2 2 2 12+ 8 2 15+ 10 226 4 4 3 1+ 3 57 8+ 4 109
2 3 1 7+ 7 5 8+ 7 260 4 4 4 7+ 3 319 8+ 4 312
2 3 1 5+ 17 355 18+ 7 97 4 4 4 7+ 3 144 6+ 4 155
2 3 2 16+ 7 292 14+ 8 326 4 5 3 4+ 2 75 7+ 3 275
2 3 2 16+ 7 165 7+ 8 183 4 5 3 44+ 2 146 3+ 3 305
2 3 3 2+ 6 186 9+ 7 15 4 5 4 4+ 3 321 11+ 3 296
2 3 3 7+ 6 72 8+ 7 278 4 5 4 5+ 3 282 7+ 3 248
2 4 1 18+ 5 166 3+ 6 128 4 5 5 3+ 2 2 8+ 3 298
2 4 1 11+ 5 154 17+ 6 225 4 5 5 3+ 2 346 44+ 3 38
2 4 2 11+ 6 201 14+ 6 157 4 6 4 5+ 2 1 124+ 2 8
2 4 2 6+ 6 235 8+ 6 246 4 6 4 24 2 299 3+ 2 9
2 4 3 14+ 5 313 6+ 5 284
2 4 3 1+ 5 277 4+ 5 305 IIL, A5, cos (k@ +m't+ak) Pf; IV, Ak, cos (k¢ +m't+aky) PF;
2 T+ 17+ /. BE —m’ i i ’ ,
g Z 2 4 i 312 ;+ Z 27: 11T, By cos (kp—m't+ ) Pfs 1V, Bf,. cos (k§p —m’t+ BL,..) PF.

Ficure 8.6 (8). L(2s) partial tide current function; extrema in kiloamperes.
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TABLE 8.7 (a). SPHERICAL HARMONIC ANALYSIS OF L(3s— 3k —p) PHASE-LAW TIDES

(Amplitudes in picoteslas; phase angles in degrees.)

internal external internal external
M ——H— ——Hr— At
nj k 1 ak, 1I e n j k I of 1I ke
nj k r A I B nj k r B 10§ e
11 0 27+14 270 57+21 251 3 2 2 7+ 5 169 33+ 6 157
1 1 1 48+ 9 320 123+12 319 3 2 2 8+ 5 257 16+ 6 170
111 11+ 9 150 12+12 287 3 3 2 7+ 4 213 13+ 5 118
1 2 0 27+11 274 68+14 293 3.3 2 17+ 4 78 14+ 5 56
1 2 1 15+ 9 336 51+11 287 3 3 3 24+ 4 353 52+ 5 315
12 1 19+ 9 24  17+11 161 3 3 3 3+ 4 21 6+ 5 323
12 2 15+ 7 138 23+ 9 85 3 4 2 3+ 4 158 6+ 4 273
1 2 2 17+ 7 234 20+ 9 254 3 4 2 6+ 4 163 8+ 4 157
1 30 1+10 10 3+12 118 3 4 3 T+ 4 217 3+ 5 220
1 3 1 11+8 139 21+ 9 67 3 4 3 3+ 4 167 7+ 5 67
131 8+ 8 183 14+ 9 274 3 4 4 10+ 4 125 11+ 5 94
1 3 2 18+ 7 47 12+ 8 322 3 4 4 9+ 4 181 4+ 5 57
13 2 19+ 7 47 6+ 8 348 3 5 2 2+ 3 299 1+ 3 121
1 4 0 14+ 8 232 28+ 9 285 3 5 2 7+ 3 88 10+ 3 96
t 4 1 15+ 6 276 26+ 6 242 3 5 3 1+ 3 326 T+ 4 21
1 4 1 11+ 6 62 20+ 6 103 3 5 3 4+ 3 85 2+ 4 101
1 4 2 10+ 6 259 12+ 6 23 3 5 4 10+ 3 38 8+ 4 29
1 4 2 12+ 6 246 20+ 6 292 3 5 4 3+ 3 350 2+ 4 214
3 6 3 8+ 3 5 10+ 3 350
2 1 1 16+ 8 342  62+11 283 3 6 3 4+ 3 221 10+ 3 204
2 11 11+ 8 14 8+11 74
2 2 1 7+ 7T 322 66+ 9 12 4 3 3 3+ 3 347 6+ 4 332
2 2 1 5+ 7 83 11+ 9 239 4 3 3 9+ 3 35 5+ 4 334
2 2 2 42+ 7 156 97+ 8 143 4 4 3 2+ 3 38 7+ 3 313
2 2 2 4+ 7 84 3+ 8 76 4 4 3 5+ 3 255 2+ 3 226
2 31 23+ 6 46 11+ 7 98 4 4 4 7+ 3 145 17+ 3 103
2 3 1 24+ 6 278 10+ 7 5 4 4 4 5+ 3 226 6+ 3 149
2 3 2 17+ 6 277 4+ 7 131 4 5 3 5+ 2 285 4+ 2 212
2 3 2 14+ 6 173 26+ 7 8 4 5 3 2+ 2 337 4+ 2 1
2 3 3 9+ 5 306 17+ 6 264 4 5 4 6+ 3 20 8+ 3 1
2 3 3 23+ 5 64 20+ 6 67 4 5 4 5+ 3 116 7+ 3 24
2 4 1 2+ 4 171 18+ 5 38 4 5 5 3+ 2 165 8+ 2 167
2 41 11+ 4 57 12+ 5 236 4 5 5 2+ 2 223 2+ 2 15
2 4 2 16+ 5 154 2+ 6 218 4 6 4 2+ 2 174 9+ 2 175
2 4 2 12+ 5 22 19+ 6 154 4 6 4 3+ 2 28 7+ 2 138
2 4 3 7+ 4 209 14+ 5 197
2 4 3 11+ 4 223 10+ 5 218 L i cos (kp+mt+af,) Pf; 11, 4, cos (kp-+mi+ab, ) PE;
2 5 2 8+ 4 333 3+ 4 8 I, B:, cos (kdp—mt+ % ) PE; 1N, BE — % ) pk
2 5 2 11+ 4 68 19+ 4 60 > B cos (k¢ Fim) B3 » Bine cO (kp—me + B,.) PE.

Ficure 8.7 (a). L(35— 3h—p) phase-law tide current function; extrema in kiloamperes.
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TABLE 8.7 (b). SPHERICAL HARMONIC ANALYSIS OF L(8s—3k—p) PARTIAL TIDES

(Amplitudes in picoteslas; phase angles in degrees.)

internal external internal external
A I A —A—
nj ok 11 by v e nj ok 11 ki IV dhe
noj ok 1V g IV Bhre nj ok IV gh, IV 5 e
11 0 102+ 13 85 243+20 97 3 2 2 8+ 5 23 7+ 6 67
1 1 1 42+ 9 81 88+ 12 45 3 2 2 9+ 5 17 23+ 6 295
1 1 1 6+ 9 107 60+ 12 303 3 3 2 7+ 5 180 2+ 5 2
1 2 0 30+ 11 360 53+ 14 262 3 3 2 12+ 5 263 3+ 5 359
1 2 1 20+ 9 216 51+10 150 3 3 3 16+ 5 59 23+ 6 3
1 2 1 13+ 9 45 33+10 144 3 3 3 4+ 5 34 4+ 6 14
1 2 2 24+ 7 259 35+ 8 250 3 4 2 6+ 4 314 6+ 4 323
1 2 2 16+ 7 247 25+ 8 292 3 4 2 8+ 4 29 7+ 4 281
1 3 0 16+ 9 111 32+ 11 137 3 4 3 14+ 4 242 3+ 5 258
1 3 1 8+ 7 310 28+ 8 307 3 4 3 9+ 4 274 7+ 5 154
1 3 1 134+ 7 96 23+ 8 51 3 4 4 T+ 4 244 5+ 5 237
1 3 2 1+ 7 185 16+ 8 156 3 4 4 T+ 4 133 54+ 5 15
1 3 2 44+ 7 7 4+ 8 302 3 5 2 3+ 3 108 11+ 3 204
1 4 0 10+ 8 325 29+ 9 177 3 5 2 10+ 3 289 7+ 3 288
1 4 1 3+ 5 31 29+ 6 170 3 5 3 T+ 4 59 94 4 339
1 4 1 9+ 5 292 10+ 6 57 3 5 3 8+ 4 80 T+ 4 1
1 4 2 5+ 5 88 5+ 6 164 3 5 4 3+ 3 344 8+ 4 133
1 4 2 10+ 5 267 10+ 6 253 3 5 4 8+ 3 14 3+ 4 334
3 6 3 10+ 3 183 8+ 3 137
2 1 1 19+ 9 230 109+12 177 3 6 3 54+ 3 195 8+ 3 176
2 11 11+ 9 329 47412 126
2 2 1 33+ 7 232 73+ 9 261 4 3 3 14 3 312 5+ 4 146
2 2 1 21+ 7 225 40+ 9 298 4 3 3 6+ 3 273 T+ 4 272
2 2 2 11+ 7 221 60+ 9 223 4 4 3 3+ 3 290 24 3 19
2 2 2 13+ 7 33 33+ 9 251 4 4 3 2+ 3 111 2+ 3 318
2 3 1 2+ 6 61 26+ 7 154 4 4 4 2+ 3 86 3+ 3 143
2 3 1 194+ 6 5 214+ 7 2 4 4 4 1+ 3 329 24 3 107
2 3 2 6+ 6 213 18+ 7 90 4 5 3 1+ 2 133 5+ 2 270
2 3 2 84+ 6 204 23+ 7 50 4 5 3 5+ 2 233 5+ 2 211
2 3 3 21+ 5 98 24+ 6 60 4 5 4 9+ 2 106 10+ 3 81
2 3 3 8+ 5 149 4+ 6 97 4 5 4 1+ 2 104 3+ 3 195
2 4 1 12+ 5 297 33+ 5 277 4 5 5 2+ 2 33 4+ 2 347
2 4 1 10+ 5 308 13+ 5 320 4 5 5 24+ 2 315 3+ 2 325
2 4 2 8+ 5 127 214+ 6 166 4 6 4 3+ 2 257 6+ 2 180
2 4 2 10+ 5 59 5+ 6 288 4 6 4 3+ 2 310 3+ 2 321
2 4 3 8+ 4 257 13+ 5 247
2 4 3 10+ 4 240 6+ 5 178 IIL, 45, cos (k¢ +m't+af, ) Pf; IV, Afy, cos (kf+m't+ o) Pf;
2 5 2 5+ 4 141 4+ 5 106 IV, B}, cos (k¢ —m't+ B.) Pf;  IV', B, cos (kp—m't+ f5,.) PE
2 5 2 3+ 4 221 5+ 5 200 :

Ficure 8.7 (b). L(3s— 8k —p) partial tide current function; extrema in kiloamperes.
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TABLE 8.8 (¢). SPHERICAL HARMONIG ANALYSIS OF L (35 —2h—$);410.0c. PHASE-LAW TIDES

(Amplitudes in picoteslas; phase angles in degrees.)

internal external internal external
[ saneeanadenm———n [m—— A} — N f-'—‘k'_\
n j k 1 A 1I o e nj k I b 11 o e
nj k r Bimi r Bime nj k r B 19 Blne
1 1 0 31+16 31 77423 47 3 2 2 5+ 5 98 47+ 6 26
1 1 1 47+ 10 64 91+13 37 3 2 2 10+ 5 241 15+ 6 16
1 1 1 27+10 177 16+ 13 42 3 3 2 5+ 5 171 23+ 5 183
1 2 0 19+13 113 36+ 17 195 3 3 2 7+ 5 342 13+ 5 57
1 2 1 23+ 10 79 93+ 12 93 3 3 3 8+ 4 21 26+ 5 80
1 2 1 14+10 34 36+ 12 129 3 3 3 11+ 5 227 6+ 5 172
1 2 2 16+ 8 155 24+ 10 86 3 4 2 6+ 4 195 18+ 4 194
1 2 2 15+ 8 328 16+ 10 332 3 4 2 11+ 4 123 11+ 4 242
1 3 0 12+ 11 202 27+ 13 332 3 4 3 20+ 4 125 26+ 5 89
1 3 1 21+ 8 173 7+10 240 3 4 3 10+ 4 47 9+ 5 302
1 3 1 15+ 8 161 20+ 10 8 3 4 4 6+ 4 49 23+ 5 226
1 3 2 4+ 8 13 23+ 9 194 3 4 4 13+ 4 24 1+ 5 283
1 3 2 6+ 8 138 2+ 9 31 3 5 2 3+ 3 334 14+ 3 38
1 4 0 11+ 9 14 25+ 10 78 3 5 2 7+ 3 22 15+ 3 67
1 4 1 26+ 6 317 33+ 7 274 3 5 3 9+ 4 32 2+ 4 265
1 4 1 19+ 6 1 8+ 7 130 3 5 3 6+ 4 322 10+ 4 119
1 4 2 6+ 6 236 18+ 7 7 3 5 4 13+ 3 226 4+ 4 18
1 4 2 5+ 6 94 20+ 7 199 3 5 4 13+ 3 183 9+ 4 20
3 6 3 3+ 3 347 7+ 3 31
2 11 4+11 19 116+ 14 202 3 6 3 3+ 3 163 2+ 3 163
2 1 1 40+ 11 233 56+ 14 88
2 2 1 13+ 10 172 49+ 11 18 4 3 3 4+ 3 266 19+ 3 203
2 2 1 32+10 18 13+ 11 286 4 3 3 6+ 3 154 3+ 3 124
2 2 2 24+ 9 177 17+10 285 4 4 3 2+ 3 88 3+ 3 38
2 2 2 14+ 9 0 13+10 200 4 4 3 6+ 3 352 3+ 3 277
2 3 1 5+ 7 358 21+ 8 5 4 4 4 7+ 3 24 19+ 3 333
2 3 1 11+ 7 151 35+ 8 51 4 4 4 5+ 3 303 4+ 3 129
2 3 2 52+ 7 305 61+ 8 250 4 5 3 11+ 2 2 20+ 2 345
2 3 2 19+ 8 167 19+ 8 299 4 5 3 4+ 2 100 T+ 2 80
2 3 3 8+ 7 227 20+ 8 14 4 5 4 4+ 2 295 5+ 3 261
2 3 3 11+ 7 16 20+ 8 220 4 5 4 3+ 2 97 6+ 3 341
2 4 1 6+ 5 177 35+ 6 219 4 5 5 4+ 2 108 12+ 2 51
2 4 1 14+ 5 294 16+ 6 136 4 5 5 3+ 2 333 1+ 2 298
2 4 2 14+ 6 159 12+ 7 10 4 6 4 44+ 2 52 6+ 2 358
2 4 2 7+ 6 357 22+ 7 135 4 6 4 3+ 2 104 4+ 2 136
2 4 3 18+ 5 34 5+ 6 335
2 4 3 9+ 5 282 13+ 6 327 L, A5, cos (kd+mt+af,) Py L, A5, cos (k¢ +mi+ o) Pf;
2 5 2 1+ 5 79 17+ 5 97 & k. 3 _ k x
2 52  6+5 7 4% 5 257 Vs Bjuy cos (kep—mt+ Bl Pf; 1V, B cos (k= mt+ o) PY.
t=12h

35— 2h—p = 270°

Ficure 8.8 (a). L(3s— 2k — p)iono. 100, Phase-law tide current function; extrema in kiloamperes.
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TABLE 8.8 (b). SPHERICAL HARMONIC ANALYSIS OF L(35— 22— p)ion0.+0c. PARTIAL TIDES

(Amplitudes in picoteslas; phase angles in degrees.)

internal external internal external
——t— ——Hr— ——r— At
n j k 111 o v e n j k 111 ok v ak e
nj k 1r BE v’ Blwe n j k IIr Bl v’ Bhve
110 40+ 16 334 67+ 24 3 3 2 2 30+ 4 263 56+ 5 235
1 1 1 12+10 20 25+ 13 355 3 2 2 15+ 4 54 9+ 5 4
111 14+ 9 121 26+13 76 3 3 2 9+ 4 255 12+ 4 269
12 0 52+12 89 114+15 68 3 3 2 14+ 4 202 T+ 4 292
1 21 25+ 10 350 73+12 353 3 3 3 15+ 4 170 32+ 4 166
1 2 1 15+ 9 284 22+ 12 341 3 3 3 13+ 4 64 5+ 4 101
1 2 2 16+ 8 14 27+ 9 112 3 4 2 3+ 3 136 10+ 4 14
1 2 2 17+ 8 109 14+ 9 162 3 4 2 6+ 3 357 4+ 4 144
1 3 0 25+ 11 38 32+13 27 3 4 3 8+ 3 354 6+ 4 350
1 3 1 7+ 8 355 31+ 9 268 3 4 3 3+ 3 202 4+ 4 330
1 3 1 10+ 8 352 28+ 9 322 3 4 4 4+ 3 54 11+ 4 5
1 3 2 5+ 17 172 11+ 9 355 3 4 4 9+ 3 256 2+ 4 74
1 3 2 15+ 7 341 7+ 9 31 3 5 2 2+ 2 150 10+ 3 133
1 40 11+ 8 253 20+ 10 211 3 5 2 6+ 2 217 16+ 3 280
1 4 1 5+ 6 207 39+ 7 67 3 5 3 4+ 3 162 7+ 3 213
1 4 1 5+ 6 87 8+ 17 327 3 5 3 5+ 3 280 3+ 3 135
1 4 2 6+ 6 287 12+ 7 122 3 5 4 9+ 3 290 12+ 3 265
1 4 2 8+ 6 168 13+ 7 72 3 5 4 2+ 3 74 6+ 3 233
3 6 3 3+ 2 50 5+ 3 169
2 1 1 68+ 8 81 120+ 11 60 3 6 3 24+ 2 124 1+ 3 128
2 11 14+ 8 272 23+ 11 3
2 2 1 5+ 17 236 53+ 9 93 4 3 3 0+ 3 315 10+ 3 352
2 2 1 14+ 7 37 27+ 9 248 4 3 3 2+ 3 202 3+ 3 46
2 2 2 26+ 7 308 75+ 8 306 4 4 3 1+ 2 101 7+ 3 148
2 2 2 11+ 7 359 23+ 8 56 4 4 3 2+ 2 30 1+ 3 127
2 3 1 2+ 6 282 55+ 6 231 4 4 4 12+ 2 21 11+ 3 9
2 3 1 14+ 6 198 17+ 6 68 4 4 4 1+ 2 115 5+ 3 293
2 3 2 17+ 6 79 46+ 7 104 4 5 3 4+ 2 2 8+ 2 294
2 3 2 12+ 6 143 T+ 7 282 4 5 3 4+ 2 100 3+ 2 23
2 3 3 14+ 5 193 8+ 6 195 4 5 4 5+ 2 185 4+ 3 154
2 3 3 13+ 5 258 7+ 6 175 4 5 4 24 2 301 2+ 3 91
2 4 1 12+ 4 283 6+ 5 194 4 5 5 7+ 2 219 6+ 2 175
2 4 1 13+ 4 20 13+ 5 112 4 5 5 1+ 2 229 3+ 2 49
2 4 2 4+ 5 212 24+ 5 346 4 6 4 2+ 2 347 8+ 2 345
2 4 2 12+ 5 318 11+ 6 117 4 6 4 3+ 2 180 2+ 2 166
2 4 3 9+ 4 54 8+ 5 91
2 4 3 3+ 4 29 5+ 5 0 III, A}, cos (k¢ +m't+aga) Pis IV, A, cos (kd+m't+afe) P
2 5 2 6+ 4 119 9+ 4 94 111, B}, cos (k¢ —m't+ ) Pf;  IV', Bl cos (kp—m't+ f},.) PE.
2 5 2 9+ 4 133 6+ 4 320

(b)

35— 2%h—p = 0°

35— 2h—p = 270°

F1GURE 8.8 (b). L(35— 2 — p)ionor.co. Partial tide current function; extrema in kiloamperes.
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TABLE 8.9 (¢). SPHERICAL HARMONIC ANALYSIS OF L(3s—h—p) PHASE-LAW TIDES

(Amplitudes in picoteslas; phase angles in degrees.)

internal
A
n j k I o
nj ok r i
1 1 0 82+ 16 270
1 1 1 14+ 11 200
1 1 1 32+ 11 206
12 0 27+ 14 103
1 2 1 50411 124
1 2 1 25+ 11 9
1 2 2 18+ 9 173
1 2 2 9+ 8 267
1 3 0 43+ 12 276
1 3 1 3+ 9 39
1 3 1 9+ 9 182
1 3 2 6+ 8 286
1 3 2 15+ 8 92
1 4 0 8+ 9 67
1 4 1 17+ 6 272
1 4 1 8+ 6 286
1 4 2 7+ 6 314
1 4 2 13+ 6 294
2 1 1 31+ 9 7
2 1 1 6+ 9 332
2 21 10+ 7 98
2 2 1 9+ 7 62
2 2 2 30+ 7 69
2 2 2 7+ 7 91
2 3 1 214+ 6 2
2 3 1 20+ 6 219
2 3 2 36+ 6 275
2 3 2 12+ 6 316
2 3 3 6+ 6 76
2 3 3 9+ 6 210
2 4 1 5+ 4 251,
2 4 1 21+ 4 45
2 4 2 13+ 5 138
2 4 2 7+ 5 103
2 4 3 3+ 4 5¢
2 4 3 5+ 4 339
2 5 2 4+ 4 158
2 5 2 8+ 4 165

external
Ay
11 ok
I % e
183+23 288
704+ 14 175
41+ 14 121
5+ 17 279
111 +13 104
33+12 335
35+10 217
11410 123
14+ 14 72
34+ 10 74
22+ 10 230
13+ 9 183
14+ 9 55
11+11 207
28+ 7 254
20+ 7 76
22+ 7 184
9+ 7 9
52+ 12 42
3112 153
30+ 9 5
26+ 9 330
46+ 9 68
22+ 9 259
28+ 6 300
20+ 6 135
53+ 7 278
14+ 7 58
15+ 6 1
6+ 6 208
7+ b 72
8+ 5 163
7+ 5 316
27+ 5 142
9+ 5 147
5+ 5 294
23+ 4 120
14+ 4 237

COCO QOO LW W WLWWLWOoWowWweweewewewwaewew 33
DTN TR BB R R R W W WL S
OO LN N R WWN N WWN N NN e

L Ll o L L i
[ R~ L B O B L R N N N Ut
T R W W R W W W W

internal
A

I ot

r Bt
11+ 5 221
3+ 5 80
12+ 5 102
3+ 5 55
14+ 4 269
5+ 4 348
7+ 4 136
5+ 4 78
21+ 4 134
11+ 4 180
6+ 4 307
5+ 4 98
1+ 3 326
5+ 3 15
1+ 4 298
9+ 4 14
4+ 3 121
4+ 3 148
4+ 3 84
2+ 3 215
3+ 3 351
9+ 3 344
1+ 3 212
2+ 3 336
6+ 3 75
5+ 3 158
3+ 2 58
5+ 2 315
10+ 3 356
3+ 3 87
4+ 2 119
2+ 2 338
4+ 2 122
7+ 2 42

cos (kp +mi+ak,) Pl

cos (kpp—mt+ ff,) Pk

external
PR —

11 ke
1 /?j‘me
22+ 6 225
26+ 6 49
31+ 5 73
1+ 5 197
26+ 5 240
10+ 5 156
14+ 4 193
24 4 55
42+ 5 108
3+ 5 271
6+ 4 170
8+ 5 298
114 3 87
12+ 3 45
14+ 4 196
5+ 4 311
16+ 4 34
7+ 4 144
9+ 3 98
4+ 3 30
12+ 4 19
2+ 4 350
8+ 3 209
11+ 3 323
19+ 3 34
5+ 3 80
12+ 3 46
10+ 3 53
22+ 3 338
4+ 3 141
10+ 3 216
3+ 3 128
2+ 2 63
3+ 2 55

11, 4%, cos (k¢ +mt+ak,,) P¥;
11, BY,, cos (kdp—mt+ f% ) PE.

FIGURE 8.9 (a). L(35—h—p) phase-law tide current functions; extrema in kiloamperes.
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TABLE 8.9 (b). SPHERICAL HARMONIC ANALYSIS OF L(35s— 3h—p) PARTIAL TIDES

(Amplitudes in picoteslas; phase angles in degrees.)

internal

e
n j k 111 ok
n j k 11r Bl
110 68+ 13 317
1 1 1 31+ 8 217
1 1 1 30+ 8 76
1 2 0 29+ 12 171
1 2 1 30+ 8 222
1 2 1 14+ 8 185
1 2 2 11+ 7 51
1 2 2 10+ 7 126
1 3 0 34+ 10 306
1 3 1 9+ 7 119
1 3 1 5+ 7 256
1 3 2 21+ 7 192
1 3 2 21+ 7 237
1 4 0 11+ 7 107
1 4 1 12+ 5 20
1 4 1 5+ 5 69
1 4 2 7+ 5 51
1 4 2 12+ 5 62
2 11 30+ 7 90
2 1 1 16+ 7 223
2 2 1 20+ 6 261
2 2 1 29+ 6 352
2 2 2 2+ 6 238
2 2 2 3+ 6 336
2 3 1 12+ 5 142
2 3 1 20+ 5 169
2 3 2 8+ 5 348
2 3 2 18+ 5 118
2 3 3 6+ 5 295
2 3 3 4+ 5 173
2 4 1 4+ 4 196
2 4 1 4+ 4 10
2 4 2 5+ 4 345
2 4 2 11+ 4 229
2 4 3 17+ 4 53
2 4 3 6+ 4 262
2 5 2 4+ 3 316
2 5 2 5+ 3 59

external

———

v ak e
v Biove
109+ 18 303
68+ 12 209
13+12 51
29+13 81
76+ 10 188
13+10 140
30+ 8 158
14+ 8 335
36+ 11 283
11+ 8 148
5+ 8 3
20+ 8 202
10+ 8 183
23+ 9 36
26+ 6 113
10+ 6 203
4+ 6 181
12+ 6 64
5+ 10 44
32+10 28
38+ 7 114
35+ 7 238
34+ 7 347
13+ 7 73
20+ 6 303
17+ 6 46
19+ 6 213
16+ 6 222
22+ 6 327
13+ 6 197
30+ 4 125
12+ 4 211
23+ 5. 336
19+ 5 86
18+ 4 10
7+ 4 224
8+ 4 214
10+ 4 220

111, 4%, cos (k¢ +m't+ o) Pf;
111", B}, cos (k¢ —m't+ f%,) P

internal
—
nj k m ok,
nj k ur -,
3 2 2 9+ 4 274
3 2 2 9+ 4 19
3 3 2 12+ 4 110
3 3 2 7+ 4 251
3 3 3 7+ 4 255
3 3 3 8+ 4 125
3 4 2 3+ 3 332
3 4 2 4+ 3 79
3 4 3 5+ 3 336
3 4 3 10+ 3 350
3 4 4 7+ 3 90
3 4 4 6+ 3 256
3 5 2 9+ 3 102
3 5 2 7+ 3 239
3 5 3 4+ 3 272
3 5 3 2+ 3 183
3 5 4 6+ 3 231
3 5 4 2+ 3 110
3 6 3 5+ 2 239
3 6 3 4+ 2 42
4 3 3 1+ 2 82
4 3 3 4+ 2 236
4 4 3 5+ 2 302
4 4 3 3+ 2 93
4 4 4 1+ 2 4
4 4 4 6+ 2 39
4 5 3 5+ 2 186
4 5 3 24+ 2 305
4 5 4 6+ 2 152
45 4 3+ 2 300
4 5 5 4+ 2 287
4 5 5 6+ 2 220
4 6 4 1+ 2 177
4 6 4 1 2 70

external

[ Sumt—

v O e
v’ Bl
2+ 5 142
12+ 5 50
8+ 4 89
4+ 4 3
21+ 4 214
9+ 4 78
7+ 4 62
T+ 4 337
15+ 4 341
2+ 4 325
6+ 4 70
2+ 4 214
14+ 3 85
8+ 3 213
4+ 3 208
5+ 3 90
13+ 3 162
2+ 3 288
12+ 3 231
4+ 3 244
3+ 3 21
5+ 3 270
7+ 3 228
4+ 3 87
2+ 3 46
2+ 3 256
6+ 2 155
5+ 2 305
10+ 2 138
5+ 2 86
4+ 2 293
3+ 2 327
3+ 2 65

2

IV, A, cos (k+m't+ak,.) P¥;

1V’, Bf,, cos (k¢ —m't+ Ble) Py.

Ficure 8.9 (b) L(3s—h—p) partial tide current function; extrema in kiloamperes.
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TABLE 8.10. SPHERICAL HARMONIC ANALYSIS OF S

NN R, ONNRR R ONNRRFEOMRRERO &

DODD O WM = = WWhN = =D = = =

CO DO DO B O WD DWW NN

D. E. WINCH

(Amplitudes in picoteslas; phase angles in degrees.)

internal

— A A}
1 o
r B
539+ 300 48
504 + 223 82
136 + 225 25
647 + 260 111
2373 + 202 17
74 + 201 62
587+ 189 62
224+ 189 98
283 + 240 207
1624170 120
213+170 223
2144166 201
200+ 166 236
313+ 194 45
558 + 122 250
240+ 122 20
196+ 129 31
158+ 129 2
587 + 152 83
181+ 152 249
307+ 123 227
337+ 121 88
416+ 129 269
188+ 126 1
163+ 93 285
112+ 95 187
1329 + 104 220
223+ 104 219
177+ 97 220
232+ 97 137
131+ 69 1
33+ 69 342
90+ 84 84
944+ 84 107
236+ 71 12
182+ 72 276
56+ 64 45
22+ 64 236
190+ 47 144
200+ 47 298
42+ 42 62
164+ 42 93
247+ 45 143
23+ 45 354
65+ 34 80
87+ 34 236
650+ 39 48
70+ 40 162
894+ 41 334
73+ 41 78
12+ 28 47
23+ 28 164
656+ 34 196

external
11 e
I e
1405+ 519 12
1019+ 314 81
472 + 314 80
979+ 334 106
6146 4 249 19
295 4 250 192
784 + 232 95
110+ 232 101
500+ 275 248
454 4200 202
348 + 200 324
3804+ 193 163
120+ 193 263
139+ 231 197
1100 + 141 161
203 + 141 245
435+ 148 328
377+ 148 15
14144198 99
53 + 200 319
325+ 145 183
52+ 144 325
1102+ 152 268
74+ 150 25
394+ 106 249
314+ 107 133
2922+ 117 197
93+ 118 269
397+ 113 288
270+ 113 266
113+ 178 191
8+ 78 179
371+ 93 256
195+ 93 225
263+ 82 60
71+ 82 31
281+ 70 47
1194+ 70 140
214+ 58 220
243+ 58 140
954+ 48 86
84+ 48 312
457+ 52 104
71+ 52 203
120+ 38 81
45+ 38 0
1168+ 44 33
124+ 44 4
209+ 45 125
61+ 45 331
164+ 30 0
86+ 30 225
201+ 36 69
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TABLE 8.10 (continued)

internal external

r A N ' A N
n J k 1 ok, 11 ok,
n j k I/ ﬁjkni II’ ﬂfne
3 5 3 58+ 33 316 89+ 37 190
3 5 4 113+ 30 163 198+ 34 271
3 5 4 48+ 30 290 61+ 34 116
3 6 3 33+ 26 323 67+ 29 224
3 6 3 94+ 26 42 814+ 29 25
4 3 3 29+ 21 309 30+ 25 346
4 3 3 59+ 21 208 114+ 25 36
4 4 3 30+ 19 282 94 22 11
4 4 3 494 19 37 31+ 21 284
4 4 4 65+ 21 324 174+ 23 302
4 4 4 53+ 21 339 8+ 23 203
4 5 3 29+ 13 252 103+ 15 208
4 5 3 174+ 13 221 294+ 15 126
4 5 4 135+ 18 244 238+ 20 215
4 5 4 37+ 18 127 18+ 20 353
4 5 5 12+ 16 284 404+ 18 52
4 5 5 204+ 16 36 20+ 18 260
4 6 4 38+ 13 309 102+ 14 258
4 6 4 294+ 13 283 19+ 14 287

I, 45, cos (k¢ +nt+ak,) PF; 11, A%, cos (kd+nt+ak,) PE
Y, B}, cos (k¢ —nt+ f},) Pf; I, B, cos (kd—nt+ pL,) PE.
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TABLE 8.11 (¢). SPHERICAL HARMONIC ANALYSIS OF S—(A)

(Amplitudes in picoteslas; phase angles in degrees.)

internal external internal external
N ——t— ———Hr— ——r—
nj k 1 ok 11 o e nj k 1 ok, 11 ok,
nj ok r Bim 1 e n j k I B I Bine
1 1 0 88+ 170 108 278+ 113 224 3 2 2 93+ 24 287 187+ 32 253
1 1 1 738+ 48 126 2335+ 69 117 3 2 2 72424 31 23+ 32 204
1 1 1 136+ 48 14 108+ 70 270 3 3 2 64 + 20 152 139+ 24 59
1 2 0 102 + 61 319 328+ 79 16 3 3 2 40+20 167 52+ 24 9
1 2 1 T6+42 153 274+ 52 237 3 3 3 207+24 230 543+ 29 224
1 2 1 60+ 42 20 14+ 52 150 3 3 3 36+ 24 307 35+ 29 339
1 2 2 153 +41 343 106 + 51 318 3 4 2 34+ 16 92 89+ 19 118
1 2 2 111+ 41 123 150+ 51 297 3 4 2 41416 232 12+ 19 19
1 3 0 171+ 54 99 99+ 64 52 3 4 3 65+ 20 337 82+ 23 338
1 3 1 340+ 36 54 907+ 42 74 3 4 3 16+ 20 28 22+ 23 45
1 3 1 70+ 36 356 84+ 42 333 3 4 4 29+21 318 68+ 25 28
1 3 2 108 + 35 123 231+ 41 39 3 4 4 62+ 21 220 8+ 25 282
1 3 2 131+35 265 131+ 41 112 3 5 2 40+ 13 106 41+ 15 116
1 4 0 112440 2 150+ 50 264 3 5 2 31+13 354 19+ 15 207
1 4 1 35+23 329 103+ 33 293 3 5 3 38+ 17 196 13+ 19 132
1 4 1 15+ 28 276 34+ 33 194 3 5 3 34+ 17 99 15+ 19 250
1 4 2 21+28 166 92+ 32 203 3 5 4 24+ 16 47 50+ 19 44
1 4 2 106 + 28 94 656+ 32 253 3 5 4 25+ 16 343 31+ 19 255
3 6 3 24+ 14 163 68+ 15 102
2 1 1 121 +50 94 402+ 68 36 3 6 3 21+13 261 39+ 15 142
2 1 1 86+ 50 122 46+ 69 72
2 2 1 54 + 40 347 139+ 48 209 4 3 3 21+ 11 156 34+ 13 129
2 2 1 94 +40 358 78+ 48 64 4 3 3 50+ 11 37 34+ 13 97
2 2 2 376+43 0 923+ 54 11 4 4 3 22+ 9 340 51+ 11 288
2 2 2 76+ 43 191 87+ 54 349 4 4 3 22+ 9 180 17+ 11 229
2 3 1 96 + 31 321 167+ 36 235 4 4 4 116+ 11 99 248+ 12 95
2 3 1 38+ 31 12 95+ 35 7 4 4 4 13+ 11 311 32+ 12 209
2 3 2 64+ 36 76 31+ 41 305 4 5 3 114+ 7 285 34+ 8 261
2 3 2 58+ 36 61 98+ 41 174 4 5 3 4+ 7 328 17+ 8 8
2 3 3 39+ 34 161 89+ 42 166 4 5 4 75+ 9 193 110+ 10 174
2 3 3 57+ 34 256 71+ 42 65 4 5 4 19+ 9 258 31+ 10 336
2 4 1 96 + 23 137 133+ 26 83 4 5 5 22+ 8 185 54+ 9 214
2 4 1 6423 24 78+ 26 44 4 5 5 30+ 8 11 15+ 9 327
2 4 2 154 +23 238 383+ 32 269 4 6 4 51+ 7 81 77+ 8 82
2 4 2 21423 150 62+ 32 94 4 6 4 12+ 7 162 32+ 8 134
2 4 3 43+25 213 135+ 29 236
2 4 3 23425 95 108+ 29 191 L 45, cos (kp+mt+af, ) Pf; 11, AF,, cos (kp+mi+ak,,) Pf;
252 19x20 343 TTi 24 300 U, By cos (kp—mt+ ) Pl iU, Bl cos (kg —mt-+ ) Ph.
2 5 2 28 + 21 58 75+ 24 57

t=0h

FiGurke 8.11 (a). S~(k) annual change of § current function; extrema in kiloamperes.
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TABLE 8.11 (). SPHERICAL HARMONIC ANALYSIS OF S*(h)

(Amplitudes in picoteslas; phase angles in degrees.)

internal external internal external
—r— N ——r— M
njok I . v e nj k 1 s v e
nj k ur - g, IV Biwe nj k ur IV e
11 0 107+71 278 94+115 210 3 2 2 103422 92 §2+ 23 82
1 1 1 924+51 285 2394+ 72 276 3 2 2 60 + 22 276 43+ 28 98
1 1 1 73+ 51 233 1114+ 72 103 3 3 2 64+ 19 289 109+ 22 177
1 2 0 194+64 139 314+ 83 153 3 3 2 45+ 19 60 22+ 22 284
1 2 1 74+ 44 282 328+ 54 25 3 3 3 295+22 4 711+ 26 354
1 2 1 27+44 242 93+ 54 344 3 3 3 32+ 22 145 47+ 26 181
1 2 2 211+42 146 294+ 53 147 3 4 2 37+15 130 35+ 17 197
1 2 2 63+ 42 332 122+ 53 137 3 4 2 29+ 15 98 17+ 17 205
1 3 0 174455 285 222+ 67 257 3 4 3 34+ 18 116 41+ 20 55
1 3 1 159 + 38 233 585+ 44 260 3 4 3 49+ 18 205 15+ 20 27
1 3 1 18 +38 140 105+ 44 166 3 4 4 61+19 173 163+ 22 161
1 3 2 128 + 37 292 160+ 43 200 3 4 4 58+ 19 116 17+ 22 290
1 3 2 134437 115 121+ 43 352 3 5 2 20+ 12 258 45+ 13 311
1 4 0 113+43 168 50+ 51 115 3 5 2 18+ 12 218 30+ 13 61
1 4 1 88+ 30 190 124+ 34 127 3 5 3 55+ 16 330 71+ 17 306
1 4 1 9+30 151, 104+ 34 356 3 5 3 28+ 16 12 184+ 17 224
1 4 2 23+ 29 44 56+ 33 4 3 5 4 42+ 15 99 31+ 16 138
1 4 2 101+29 306 55+ 33 144 3 5 4 17+ 15 315 18+ 16 74
3 6 3 24+12 300 41+ 13 254
2 1 1 250+45 254 314+ 60 223 3 6 3 12+12 300 25+ 14 19
2 1 1 62+ 46 9 127+ 60 232
2 21 66 + 37 59 283+ 43 338 4 3 3 10+ 9 20 14+ 11 12
2 2 1 153+37 209 29+ 43 319 4 3 3 26+ 9 297 10+ 11 305
2 2 2 523+38 150 1325+ 47 147 4 4 3 27+ 8 115 36+ 9 60
2 2 2 65+ 38 122 59+ 47 225 4 4 3 10+ 8 36 29+ 9 70
2 3 1 36428 297 23+ 31 119 4 4 4 103+ 9 219 206+ 10 214
2 3 1 34+28 299 71+ 31 226 4 4 4 11+ 9 126 30+ 10 62
2 3 2 92 +32 199 113+ 37 150 4 5 3 17+ 6 339 25+ 7 6
2 3 2 44 + 32 275 67+ 36 355 4 5 3 4+ 6 118 20+ 7 199
2 3 3 18 +30 350 214+ 36 328 4 5 4 60+ 7 324 91+ 8 311
2 3 3 16 + 30 100 20+ 36 278 4 5 4 27+ 7 150 20+ 8 199
2 4 1 62 + 20 252 83+ 23 248 4 5 5 30+ 7 9 67+ 8 352
2 4 1 26+ 20 173 52+ 23 238 4 5 5 15+ 7 267 17+ 8 151
2 4 2 176+25 123 390+ 28 107 4 6 4 17+ 6 199 18+ 6 232
2 4 2 29+ 25 332 70+ 28 266 4 6 4 19+ 6 360 20+ 6 340
2 4 3 37+ 22 266 52+ 25 330
2 4 3 23 +22 330 63+ 25 43 111, 4}, cos (kd+m't+af,,) Pt; 1V, 4, cos (k¢ +m't+of ) Pf;
3 5 3 i1 a1 sos o1 209 T, Bl cos (bp—m't-+ B B IV, Bl cos (bp—mit-4 ) P
(0)
o
(=
Il
<
o
=
]
I
<

Ficure 8.11 (b). S+(k) annual change of § current function; extrema in kiloamperes.
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TABLE 8.12 (2). SPHERICAL HARMONIC ANALYSIS OF $—(24)

(Amplitudes in picoteslas; phase angles in degrees.)

internal
f-—k—'_\
n j k I ok,
nj k T -
11 0 81+23 258
1 1 1 46+ 21 118
1 1 1 52+ 21 155
1 2 0 120 + 24 158
1 2 1 33+19 23
1 2 1 5+ 19 152
12 2 37+ 18 177
1 2 2 32+18 240
1 3 0 35+21 48
1 3 1 30+ 16 60
1 3 1 25+ 16 247
1 3 2 23+15 41
1 3 2 21+ 15 86
1 4 0 34+ 18 230
1 4 1 59+ 1t 185
1 4 1 23+ 1t 14
1 4 2 8+12 15
1 4 2 5+ 12 103
2 11 106 + 21 259
2 1 1 19+ 21 230
2 2 1 14+ 17 313
2 2 1 16+ 17 224
2 2 2 57+ 17 235
2 2 2 29+ 17 344
2 3 1 37+13 319
2 3 1 19+ 13 311
2 3 2 17+ 14 143
2 3 2 23+ 14 207
2 3 3 22+ 13 194
2 3 3 27+ 13 47
2 4 1 22+ 9 243
2 4 1 5+ 9 309
2 4 2 10+ 11 153
2 4 2 37+ 11 57
2 4 3 20+ 10 223
2 4 3 15+ 10 210
2 5 2 19+ 9 118
2 5 2 4+ 9 352

external

A
11 ak .
1 Bine
114 +44 225
39+28 172
52+23 193
40+ 31 190
164 +23 45
110 +23 220
38+ 21 243
16 +21 224
81+25 52
81+ 18 55
66+ 18 11
76+ 18 73
23+18 116
113420 23t
203+ 13 154
55+ 13 270
23+ 13 227
45+ 13 32
455+ 27 256
60 +27 4
77+ 19 ¢2

81+ 19 2.
154 + 20 3
29 +20 168
134+ 14 279
23+ 14 61
122+ 16 155
31+ 16 257
72+ 15 125
34+ 15 35
58+ 10 216
8+ 10 201
76+ 12 339
25+ 12 81
51+ 11 207
9+ 11 30
82+ 9 110
29+ 9 314

WWWWWRH WL WWWWWWWWwwwww =
SOUU DG GT R R R R W W W S,
IO S S SN Y A RCR O IR IR O CF Ul R

4 3 3
4 3 3
4 4 3
4 4 3
4 4 4
4 4 4
4 5 3
4 5 3
4 5 4
4 5 4
4 5 5
4 5 b
4 6 4
4 6 4

1, 4%, cos (ke +mt+

internal

——r—
Iy,
r ﬂjmi
14+ 10 29
37+ 10 199
5+ 9 200
26+ 9 20
26+ 10 208
11410 312
18+ 8 186
20+ 8 223
38+ 9 77
8+ 9 76
24+ 9 341
12+ 9 7
6+ 6 156
T+ 6 135
12+ 7 356
16+ 7 215
12+ 7 47
14+ 7 264
25+ 6 16
12+ 6 62
19+ 7 244
19+ 7 129
14+ 6 10
12+ 6 230
30+ 6 89
31+ 6 27
8+ 4 356
13+ 4 50
34+ 6 293
0+ 6 87
23+ 5 208
3+ 5 169
8+ 4 276
12+ 4 143
o‘fmi) Pf;

U, B, cos (k¢ —mt+ ft.) PF;

jmi

external
——r—

11 ok e
I Bime
94+ 13 63
22+13 179
38+ 11 253
20+ 11 259
38+ 12 195
2+12 99
65+ 9 136
23+ 9 129
91+ 10 40
23+ 10 222
42+10 301
18+ 10 337
22+ 7 321
12+ 7 125
17+ 8 117
14+ 8 56
49+ 8 355
17+ 8 318
86+ 7 341
9+ 7 175
37+ 8 235
10+ 8 56
144+ 7 318
9+ 7 173
49+ 7 62
20+ 7 213
29+ 5 314
5+ 5 19
88+ 6 255
11+ 6 334
59+ 5 154
7+ 5 173
14+ 4 271
10+ 4 125

IL, 4%, cos (kd+mi+ak,,) PL;

I, B}

t=12h

jme

cos (k¢ —mt+

k
jme

) P}

FIGURE 8.12 (¢). S—(2h) semi-znnual change of § current function; extrema in kiloamperes.
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TABLE 8.12 (b). SPHERICAL HARMONIC ANALYSIS OF S*(2h)

(Amplitudes in picoteslas; phase angles in degrees.)

internal

s T
n j k III ok
n j k IIr Bl
1 1 0 84 +43 79
1 1 1 130+33 89
1 1 1 18 +33 105
1 2 0 67+39 77
1 2 1 148429 346
1 2 1 34429 349
1 2 2 43+23 134
1 2 2 20423 76
1 3 0 22+ 33 169
1 3 1 27425 120
1 3 1 37425 180
1 3 2 19+ 24 335
1 3 2 22424 262
1 4 0 70+ 28 173
1 4 1 46417 203
1 4 1 53+ 17 7
1 4 2 42+19 153
1 4 2 27419 53
2 11 68 + 32 23
2 11 128433 250
2 2 1 133+26 212
2 21 101 + 26 90
2 2 2 93+ 26 235
2 3 2 99+ 26 0
2 31 29419 245
2 2 1 31+19 235
2 3 2 83+ 21 188
2 3 2 - 28x21 206
2 3 3 25+ 19 175
2 3 3 40+ 19 110
2 4 1 14+ 14 51
2 4 1 16+ 14 256
2 4 2 12+17 123
2 4 2 33+17 200
2 4 3 41+ 14 41
2 4 3 43+ 14 272
2 5 2 38+ 12 75
2 5 2 9412 45

external
" N

v ok e
v Bie
208+ 71 354
358+ 45 94
127 +45 44
81+48 76
273+ 35 345
148 + 35 183
100+ 33 197
22433 201
129+ 39 91
106 + 29 271
92+ 23 353
40+ 23 264
20+ 23 203
1474+ 32 208
243 +20 166
23+20 211
22+21 50
73+21 33
156 + 39 220
42+ 39 59
181+ 28 148
94+ 23 223
446 + 30 296
42 + 30 62
144+ 21 266
33+21 124
363 +23 150
22+23 270
114+ 22 34
32+ 22 263
49+ 15 186
18+ 15 226
76+ 18 302
52+ 18 247
94+ 15 106
32415 324
144+ 13 59
26+14 139

internal

f_—&—'—\
n j k 111 ak
n j k II1’ Bl
3 2 2 60+ 14 124
3 2 2 62+ 14 280
3 3 2 68+ 13 37
3 3 2 53+13 89
3 3 3 91+ 14 154
3 3 3 35+ 14 279
3 4 2 29410 152
3 4 2 41+ 10 259
3 4 3 139+ 12 31
3 4 3 35+12 138
3 4 4 41+ 13 306
3 4 4 44+ 13 58
3 5 2 18+ 8 320
3 5 2 3+ 8 119
3 5 3 25+ 10 189
3 5 3 28+ 10 338
3 5 4 4+ 9 188
3 5 4 35+ 9 234
3 6 3 28+ 8 316
3 6 3 15+ 8 116
4 3 3 21+ 8 227
4 3 3 29+ 8 205
4 4 3 31+ 7 231
4 4 3 23+ 7 13
4 4 4 24+ 8 356
4 4 4 28+ 8 345
4 5 3 9+ 5 254
4 5 3 4+ 5 72
4 5 4 64+ 7 244
4 5 4 15+ 7 140
4 5 5 3+ 6 168
4 5 5 9+ 6 3
4 6 4 8+ 5 260
4 6 4 8+ 5 173

II1, 45, cos (k¢p+m't+af,) PF;

external
(_'_&—'—\
v ak .
v’ % e
80+ 18 11
65+ 18 147
67+ 15 41

156+ 15 321
192+ 16 116

10+ 16 225
47+ 12 106
6+ 12 46
190+ 13 4
36+13 317
77+ 14 210
14+ 14 37
59+ 9 328
40+ 9 239
68+ 11 64
26+ 11 166
109+ 10 301
25+10 149
47+ 9 255
27+ 9 14
54+ 10 209
13+ 10 25
29+ 8 247
7+ 8 290
58+ 9 312
7+ 9 163
37+ 6 241
4+ 6 146
117+ 8 211
10+ 8 348
39+ 7 68
16+ 7 244
42+ 5 227
6+ 5 309

IV, 4., cos (kp+m't+ o) P¥;

1L, B}y cos (kp—m't+ ) Pf; TV, By, cos (kp—m't+fy) PL.

t =

12 h

FicUre 8.12 (b). S*(2k) semi-annual change of § current function; extrema in kiloamperes.
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TABLE 8.13. SPHERICAL HARMONIG ANALYSIS OF LONG-PERIOD TIDES

(Amplitudes in picoteslas; phase angles in degrees.)

internal external internal external
——H— ——— — — N

n J k I a’;cmi 11 OL;‘ me n J k I a;mi 1 ajkme

n J k r ﬂjkmi r ﬂfme n J k r ﬂjkmi 1 ﬂfme

0 1 0 231+45 348 597+ 68 331 0 3 0 55+ 46 188 179+ 42 300

0 1 1 54423 76 137+ 30 102 3 0 3 1 57+ 23 180 67+ 33 49

0 1 1 95+ 23 71 102+ 30 69 j 0 3 1 47+ 23 153 76+ 33 57

0 2 0 109+40 166 201+ 46 106 S0 4 0 41+ 34 157 34+ 38 206

<0 2 1 31+22 132 50+ 26 25 0 4 1 22+ 20 307 39+ 23 245

T 0 2 1 23+ 22 226 58+ 27 61 0 4 1 74420 335 494+ 23 257
S0 3 0 23+29 312 70+ 34 219

0 3 1 19+ 22 193 70+ 24 217 0 1 0 318+ 48 158 905+ 76 164

0 3 1 15+ 22 337 24+ 24 122 0 1 1 39+25 239 83+ 33 272

0 4 0 69422 105 T2+ 25 332 0 1 1 63+25 236 144+ 33 292

0 4 1 33+16 49 494+ 18 34 0 2 0 123+42 263 66+ 52 237

0 4 1 22+ 16 119 48+ 18 89 0 2 1 34+ 25 157 74+ 30 115

To o2 1 T£25 38 36+ 30 323

0 1 0 146 + 44 56  387+177 9 K0 3 0 61433 319 87+ 39 336

0 1 1 45+ 24 140 114+ 32 141 0 3 1 18424 302 13+ 27 305

0 1 1 44+ 24 352 48 + 32 115 0 3 1 24+ 24 34 79+ 27 125

0 2 0 47+43 349 55+46 81 0 4 0 244+ 25 205 120+ 23 68

<0 2 1 51+23 199 54+ 23 69 0 4 1 28+ 17 352 18+ 19 8

c? 0 2 1 22+23 300 9423 85 0 4 1 39417 184 48+ 19 306
S0 3 0 33:30 235 51434 95

0 3 1 65+ 22 34 48+ 25 335 0 1 0 641+ €60 173 1135+ 89 164

0 3 1 36+ 22 119 18+25 321 0 1 1 86+29 275 165+ 38 182

0 4 0 54425 42 45+ 26 295 0 1 1 131+29 303 193+ 38 232

0 4 1 22416 283 50+ 18 133 0 2 0 355+55 11 1344+ 68 349

0 4 1 31+16 74 28+ 18 90 0 2 1 91+29 323 85+ 35 297

R 0 2 1 73+29 298 58+ 35 237

0 1 0 124+ 44 276 652+ 103 189 0 3 0 69+ 33 77 32+ 41 243

<~ 0 1 1 14+ 30 49 231+ 41 309 0 3 1 29+ 27 80 128+ 31 76

T 0 1 1 42+ 30 212 83+ 41 343 0 3 1 20+ 23 7 34+ 31 335

K0 2 0 237+52 143 111+ 75 176 0 4 0 34+ 31 338 76+ 36 175

0 2 1 59+ 31 100 134+ 37 152 0 4 1 14+ 20 103 67+ 22 297

0 2 1 27+ 30 160 77+ 37 143 0 4 1 50420 98 63+ 22 256

Sectorial terms in the semi-annual variation of the lunar magnetic tide are shown to come into
phase at certain times of the year and to dominate the principal lunar magnetic tide L(2s — 24).
Non-local time terms that are sectorial in form and westward-drifting are found in all types
of magnetic tide. They occur in groups for which the 1, 2, 3, 4, c/d terms come into phase at
local-noon and also in tidal groups that come into phase at certain times of the year.

All long-period tides are found to be of external origin with the exception of the annual and
six-monthly tides which are of internal origin.

Inclusion of the dynamical equation of motion in ionospheric dynamo theory is shown to
resolve the lack of uniqueness in the determination of the wind velocity from the magnetic
tide. Hough functions are introduced and their relation to scalar functions @, ¥, derived. For
the generation of the solar diurnal tide, the (1, 1) mode is found to be the dominant mode,
although the (1, —2) mode is shown to be a more efficient generator of the P magnetic tide.
For S, L(2s—2h) and L(3s—2h—p) semi-diurnal magnetic tides, the (2, 2) mode is the domi-
nant mode. It is found that this mode is directly able to produce the 180° phase angle difference
found between the P% and P% lunar and lunar elliptic tidal parameters.
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internal

("'"“"A“’_‘ﬂ

n j k 1 ak
n ] k I/ ,ikmi

0 1 0 186+39 322
0 1 1 39+23 12
0 1 1 62+23 131
0 2 0 169+35 133
S0 2 1 15+20 261
=0 2 1 38+21 189
10 3 0 28+27 300
S0 3 1 56+18 104
0 3 1 10+18 274
0 4 0 10+19 101
0 4 1 35+15 245
0 4 1 24+15 75
0 1 0 179+40 352
01 1 17421 237
0 1 1 58+21 348
<0 2 0 93135 185
70 2 1 §2421 136
N0 2 1  55+21 43
l 0 3 0 74420 247
“ 0 3 1 5419 205
0 3 1 68+19 173
0 4 0 52+20 89
0 4 1 23+14 267
0 4 1 30+14 223
0 1 0 384+ 47 17
7\0 11 90+ 24 64
<0 1 1 494+ 24 66
ml, 0 2 0 171+ 42 159
0 2 1 18+ 23 124
0 2 1 78+ 23 57

1, A}, cos (k¢ + wt+oaf,) Pf; 11, A, cos (k¢ + wt+ak,.) P,
cos (k¢ —wt+ p5,) P¥; 11, By, cos (k¢ —wi+ f5,.) P}.

I, B

gmi

TABLE 8.13 (continued)

external

A ——
II o
II/ fme
325+ 56 27
65+ 30 69
73+ 30 100
20+ 46 160
36+ 24 109
67+ 25 200
62+ 35 331
39+ 21 267
35+21 137
23 +22 298
15+ 16 343
12416 258
176+ 59 330
41428 187
112428 228
57+43 174
60+ 25 342
12+25 46
12+ 32 339
35+ 22 201
84 + 22 71
47422 250
29+ 16 214
52+ 16 238
854+ 67 24
46+ 32 99
1344+ 32 49
152+ 52 174
215+ 27 58
46+ 27 18

3s—h—p
coococoo aa

2h

S OO OQO

[=JN= i i = I =2 IR =R == Ry o)

BB R W W w SS,

B R W W WD NN = = =

B B 0 W W NN o

e O et D = D = O _— O e = O X X~

—_m O = O D =D

8. NUMERICAL RESULTS

internal

—r—
I a‘jkmi
II ;Cmi
19+ 29 272
26+ 23 94
100+ 22 219
30+ 25 174
45+ 16 245
35+ 16 68
4417+ 461 174
290+193 174
157+192 210
3969+ 371 356
1473+ 199 291
11224200 289
602 + 266 10
6824 166 48
919+ 164 71
229 + 224 5
160+ 117 111
133+ 116 24
16944308 251
190+ 141 306
2334140 141
1808 + 223 58
721+ 138 10
4404137 241
594+ 188 111
308+ 116 134
1914114 330
197+ 104 354
104+ 81 174
219+ 81 9

97
external
P
1I e
II, ]lcme
42+ 35 234
46+ 25 257
28+ 25 177
22+ 27 212
31+ 18 33
24+ 18 344
653+539 309
254 +240 206
4774240 156
2007 + 342 68
880+223 138
7664226 253
7674308 178
487+183 311
464 + 181 84
580 + 204 51
320+ 128 156
209+ 128 324
1732+ 404 301
451+ 172 227
235+ 170 9
1290 + 290 82
340+ 153 316
699+ 154 191
879+ 169 327
453 + 128 97
343+ 123 7
167+ 171 99
273+ 89 260
242+ 89 172

Results of calculations for the magnetic tides and their elliptic and seasonal components are
given in tables 8.1-8.13. Amplitudes and their standard deviations are given in picoteslas
(1 pT = 10-%nT), phase angles are given in degrees. Standard deviations have not been
given for phase angles. The analysis by Malin (1973) of the solar and lunar magnetic tide for
the I.G.Y. years is given in table 8.14 in a form directly comparable with the preceding tables,

i.e. as coefficients of eastward- and westward-moving waves.

~ Within each column of the tables, the amplitudes and phase angles are given in the order

n j k Ak cos (k¢ +mt+ k)

Pk

7

n .] k le’cmc €os (k¢ "'mt'i'/))a,'cme) PJk

(westward-moving),

(eastward-moving),

where the subscript e refers to terms of external origin, often originating in the ionosphere. A
subscript i is used to refer to terms of internal origin, induced in the electrically conducting Earth

Vol. 303.
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TABLE 8.14 (¢). SPHERICAL HARMONIC ANALYSIS OF L(2s5— 2k) BY MALIN (1973)

(Amplitudes in picoteslas; phase angles in degrees.)

internal external internal external
At ——— ——Hr— N

n j k | ok 11 e n j k I ok 11 oF e
n «] k I chmi II/ ;c'"e n J k r ﬁj"mi 1r ﬂ;‘me
1 10 84 +45 266 85+ 65 356 3 2 2 924+ 16 320 144+ 20 303
1 1 1 54424 232 91434 159 3 2 2 33+16 134 39+ 20 306
1 1 1 42+ 24 333 72+ 34 300 3 3 2 30+ 14 156 59+ 17 106
1 2 0 24+ 34 154 132444 191 3 3 2 21+ 14 163 37+ 17 195
1 2 1 139+ 25 103 338+ 31 94 3 3 3 16+ 13 54 45+ 16 112
1 21 20+ 25 254 103+ 31 347 3 3 3 55+ 13 196 31+16 165
1 2 2 73+ 19 50 120 +23 127 3 4 2 20+ 12 151 31+13 295
1 2 2 107+ 19 53 37+23 152 3 4 2 35+ 12 319 12+ 13 344
1 3 0 60+ 31 219 102 + 36 347 3 4 3 96+ 13 112 189+ 15 101
1 3 1 74+ 21 107 14425 87 3 4 3 28+13 59 28+ 15 57
1 3 1 28+ 21 154 5+25 122 3 4 4 22+ 12 155 54+ 13 119
1 3 2 45+ 16 242 27+19 297 3 4 4 22+ 11 276 34+13 83
1 3 2 40+ 16 248 30+19 344 3 5 3 19+ 10 253 42+ 11 261
1 4 1 97+ 17 285 151+19 270 3 5 3 8+ 10 117 9+ 11 201
1 4 1 38+ 17 299 40+ 19 69

4 3 3 20+ 6 129 24+ 7 111
2 1 1 70+ 40 123 123+ 57 135 4 3 3 9+ 6 21 25+ 7 245
2 1 1 151 +41 199 86+ 57 60 4 4 3 8+ 6 178 25+ 7 211
2 2 1 38+42 43 78+ 51 260 4 4 3 5+ 6 238 10+ 7 93
2 2 1 55+42 343 16+ 51 239 4 4 4 3+ 5 248 2+ 6 278
2 2 2 55430 121 103+ 37 338 4 4 4 16+ 5 150 2+ 6 337
2 2 2 123+ 30 286 32+ 37 60 4 5 3 14+ 5 238 10+ 5 184
2 3 1 58 +34 307 193+ 39 40 4 5 3 8+ 5 146 124+ 5 144
2 3 1 74+ 34 77 87+ 39 154 4 5 4 22+ 5 281 39+ 6 266
2 3 2 220+29 291 497+ 34 273 4 5 4 10+ 5 271 14+ 6 291
2 3 2 86+ 29 51 22+ 34 71 4 5 5 17+ 5 26 20+ 5 316
2 3 3 80+ 24 240 132+ 28 300 4 5 5 12+ 5 260 11+ 5 337
2 3 3 85+ 23 356 64 + 28 130 4 6 4 4+ 4 348 15+ 5 71
2 4 1 68+ 25 74 88 + 27 175 4 6 4 3+ 4 344 8+ 5 174
2 4 1 37+24 169 40+ 27 160
2 4 2 22423 7 90+ 26 95 I, 4}, cos (kp+mi+ak, ) PE; 11, A%, cos (k¢ +mi+ab,.) PF
2 4 2 46%23 180 3027 227 I, B, cos (k¢ —me+ pt,) Pf; 11, BE,, cos (k¢ —mt+ fF,.) P
2 4 3 45+ 19 41 10+ 22 93 )
2 4 3 32+ 19 116 72+ 22 36

or oceans by the external terms. For phase-law tides m = n—w and for partial tides m is re-
placed by m’, where m’ = n+w. Values of the parameter w for the various magnetic tides are
given in equation (6). For solar magnetic tides in table 8.10, the parameter w is zero, and the
parameter 7 is used in place of both m and m'.

When the parameter £ is zero, only the westward-moving form with coefficient 4%,., etc.
is used. When the parameter 7 is zero the tide is a long-period tide, and all such results are
collected together in table 8.13.

Schmidt quasinormalized spherical harmonic functions have been used throughout in the
calculations, as defined in Chapman & Bartels (1940, ch. 17, §4). See Table 4.1.

Table 8.1 contains the results for the phase-law tides of the principal lunar and lunar elliptic
magnetic tides, L(2s—2k) and L(3s—2h—p) respectively. The semi-diurnal » = 2 harmonic
in both cases has been derived from the harmonics n = 1, 3, 4 by using the ocean dynamo
calculation of Malin (1970). Hence the results of table 8.1 are for magnetic tides of purely
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TABLE 8.14 (b). SPHERICAL HARMONIC ANALYSIS OF § BY MALIN (1973)
(Amplitudes in picoteslas; phase angles in degrees.)

internal external internal external
— —_— —_—— P N

n j k III ak., Iv ok, nj k 111 oy AV ak,,
nj k Iy BEa v Brve nj k I % v Bie
1 1 0 1618+655 127 1904+954 288 3 2 2 187+ 86 228 700+107 196
1 1 1 1210+336 107 1359+506 55 3 2 2 77+ 86 18  153+107 54
1 1 1 7254330 182 756+504 12 3 3 2 287+ 78 182 167+ 92 225
1 2 0 669+493 95 34434665 85 3 3 2 83+ 78 204 74+ 92 129
1 2 1 44974368 7 12213 +479 7 3 3 3 154+ 74 104 521+ 87 93
1 2 1 380+368 17 1104 +479 178 3 3 3. 96+ 74 284 210+ 87 295
1 2 2 880+266 79 2939+ 344 65 3 4 2 333+ €2 59 326+ 71 43
1 2 2 2214266 157 348+344 93 3 4 2 40+ €62 565 163+ 71 264
1 3 0 11414454 78 21544539 277 3 4 3 955+ 69 34 2144+ 79 16
1 3 1 437+319 333 1071+388 171 3 4 3 144+ 69 175 133+ 79 99
1 3 1 5€2+319 266 855+388 352 3 4 4 189+ (2 89 166+ 70 45
1 3 2 1771234 61 8824282 232 3 4 4 102+ €2 21 178+ 70 125
13 2 223+234 339 453+282 349 "3 5 3 95+ 54 172 146+ €60 119
. 4 1 1721+258 207 2928+296 160 3 65 3 £0+ 64 22 29+ €0 74
14 1 712+258 31 738+296 233

4 3 3 86+ 34 34 182+ 41 12
2 1 1 204+254 61 24994 351 58 4 3 3 74+ 34 140 90+ 41 311
2 1 1 544+256 272 166+347 161 4 4 3 31+ 33 50 119+ 38 85
2 2 1 5414254 18 553+302 179 4 4 3 66+ 33 302 66+ 38 104
2 2 1 757+255 93 373+303 101 4 4 4 63+ 32 332 171+ 37 237
2 2 2 539+182 295 1307+228 254 4 4 4 71+ 32 203 58+ 37 245
2 2 2 4734185 34 610+232 333 4 5 3 86+ 26 235 105+ 30 219
2 3 1 4744198 247 999+228 30t 4 5 3 16+ 26 237 39+ 29 257
2 3 1 2774198 175 2114223 199 4 5 4 195+ 30 232 420+ 34 209
2 3 2 2500+181 198 5953+210 182 4 5 4 42+ 30 329 48+ 34 56
2 3 2 138+181 342 408+209 196 4 5 b 37+ 27 30 38+ 30 307
2 3 3 482+143 206 1050+166 238 4 5 5 47+ 27 338 30+ 30 5
2 3 3 622+143 151 443+166 240 4 6 4 77+ 24 292 143+ 26 276
2 4 1 255+141 280 687+1566 150 4 6 4 33+ 24 47 34+ 26 333
2 4 1 269+142 301 147 + 156 29 ‘
2 4 2 262+142 32 696+160 347 111, 4}, cos (k¢ +nt+ak,) PF; 1V, AL, cos (k¢ +nt+ak,) P}
2 4 2 402+143 196 121+159 144 IIV, B, cos (k¢ —nt+ L) P; IV, B, cos (ké—nt+fh,) PL.
2 4 3 346+124 342 391+139 88
2 4 3 188+122 282 87+139 78

ionospheric origin with no direct contribution from ocean dynamos associated with the tides
M, and N,.

Tables 8.2-8.6 contain spherical harmonic coefficients for phase-law tides and partial tides
of L(2s—4h), L(2s—3k), L(25—2k), L(2s— k) and L(2s) respectively. The n = 2 coeflicients in
table 8.4 are computed directly from observatory Fourier coefficients, and include ocean dynamo
M, contributions.

Tables 8.7-8.9 contain spherical harmonic coefficients for phase-law tides and partial tides
of L(3s—3h—p), L(3s—2h—p) and L(3s—h—p). The n = 2 coefficients in table 8.8 have been
computed directly from observatory Fourier coefficients, and include ocean dynamo N,
contributions.

Table 5.10 contains spherical harmonic coefficients for the solar magnetic tide S, while’
tables 5.11 and 5.12 contain coefficients of the annual and semi-annual change of §, denoted

7-2
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S(h) and S(2k), respectively. The nomenclature ‘phase-law tide’ and ‘partial tide’, based on
the physical mechanism for the generation of lunar magnetic tides does not apply to the
seasonal variation of the solar magnetic tide, even though the mathematical form is essentially
the same. A new nomenclature has been introduced, e.g. $~(%) for what might otherwise have
been referred to as a phase-law tide associated with S(%) and $+(k) in place of partial tide.

Table 8.13 contains results for the analysis of long-period tides which were obtained as a
by-product of the analyses of magnetic tides given in the preceding tables. The periods and
corresponding frequencies of the long-period tides are given in equation (6).

I am indebted to World Data Center A, Boulder, Colorado for providing geomagnetic hourly
mean values for 1964-1965 in yearbook or machine-readable form. Mr W. Paulishak of World
Data Center A answered all of the many queries about the data that arose during the analysis.
Mr P. A. Rickards and Mrs M. Garwood of the Agricultural Business Research Institute at
the University of New England, Armidale, New South Wales, organized the punching and
verification of approximately 850000 punch cards containing geomagnetic hourly mean values.’
Dr S. R. C. Malin of the Institute of Geological Sciences, Edinburgh, kindly providedsolar
and lunar geomagnetic Fourier coefficients for the I.G.Y. years on punch cards. The research
project was supported by a grant (B65/15071) from the Australian Research Grants Committee.
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